

1 Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers

- 2 and their atmospheric relevance
- 3 Zhe Peng¹, Julia Lee-Taylor^{1,2}, John J. Orlando², Geoffrey S. Tyndall² and Jose L. Jimenez¹
- 4 ¹ Cooperative Institute for Research in Environmental Sciences and Department of Chemistry,
- 5 University of Colorado, Boulder, Colorado 80309, USA
- 6 ² Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric
- 7 Research, Boulder, Colorado 80307, USA
- 8

11

- 9 Correspondence: Zhe Peng (zhe.peng@colorado.edu) and Jose L. Jimenez
- 10 (jose.jimenez@colorado.edu)

12 Abstract. Oxidation flow reactors (OFR) are a promising complement to environmental chambers for 13 investigating atmospheric oxidation processes and secondary aerosol formation. However, questions 14 have been raised about how representative the chemistry within OFRs is of that in the troposphere. We 15 investigate the fates of organic peroxy radicals (RO_2), which play a central role in atmospheric organic 16 chemistry, in OFRs and environmental chambers by chemical kinetic modeling, and compare to a variety 17 of ambient conditions to help define a range of atmospherically relevant OFR operating conditions. For 18 most types of RO₂, their bimolecular fates in OFRs are mainly RO₂+HO₂ and RO₂+NO, similar to chambers 19 and atmospheric studies. For substituted primary RO2 and acyl RO2, RO2+RO2 can make a significant 20 contribution to the fate of RO₂ in OFRs, chambers and the atmosphere, but RO₂+RO₂ in OFRs is in general 21 somewhat less important than in the atmosphere. At high NO, RO₂+NO dominates RO₂ fate in OFRs, as 22 in the atmosphere. At high UV lamp setting in OFRs, RO_2 +OH can be a major RO_2 fate and RO_2 23 isomerization can be negligible for common multifunctional RO2, both of which deviate from common 24 atmospheric conditions. In the OFR254 operation mode (where OH is generated only from photolysis 25 of added O_3), we cannot identify any conditions that can simultaneously avoid significant organic 26 photolysis at 254 nm and lead to RO₂ lifetimes long enough (~10 s) to allow atmospherically relevant 27 RO2 isomerization. In the OFR185 mode (where OH is generated from reactions initiated by 185 nm 28 photons), high relative humidity, low UV intensity and low precursor concentrations are recommended 29 for atmospherically relevant gas-phase chemistry of both stable species and RO2. These conditions 30 ensure minor or negligible RO₂+OH and a relative importance of RO₂ isomerization in RO₂ fate in OFRs 31 within ~x2 of that in the atmosphere. Under these conditions, the photochemical age within OFR185 32 systems can reach a few equivalent days at most, encompassing the typical ages for maximum 33 secondary organic aerosol (SOA) production. A small increase in OFR temperature may allow the relative 34 importance of RO₂ isomerization to approach the ambient values. To study heterogeneous oxidation of 35 SOA formed under atmospherically-relevant OFR conditions, a different UV source with higher intensity 36 is needed after the SOA formation stage, which can be done with another reactor in series. Finally, we 37 recommend evaluating the atmospheric relevance of RO2 chemistry by always reporting measured and/or estimated OH, HO₂, NO, NO₂ and OH reactivity (or at least precursor composition and 38 39 concentration) in all chamber and flow reactor experiments. An easy-to-use RO₂ fate estimator program 40 is included with this paper to facilitate investigation of this topic in future studies.

41 1 Introduction

42 Laboratory reactors are needed to isolate and study atmospheric chemical systems. Environmental 43 chambers have been a major atmospheric chemistry research tool for decades (Cocker et al., 2001; 44 Carter et al., 2005; Presto et al., 2005; Wang et al., 2011; Platt et al., 2013). Over the last few years, 45 oxidation flow reactors (OFRs) (Kang et al., 2007) have emerged as a promising complement to 46 chambers, and are being used to investigate atmospheric oxidation processes, particularly volatile 47 organic compound (VOC) oxidation and secondary organic aerosol (SOA) formation and aging (Kang et 48 al., 2011; Lambe et al., 2015; Hu et al., 2016; Palm et al., 2016). These processes have air quality (Levy 49 II, 1971), human health (Nel, 2005) and climate impacts (Stocker et al., 2014).

50 The most important advantage of OFRs is their ability to achieve relatively high photochemical 51 ages (on the order of equivalent hours or days (assuming an average ambient OH concentration of 52 1.5x10⁶ molecules cm⁻³; Mao et al., 2009) in minutes instead of hours in chambers (Lambe et al., 2011). 53 Rapid aging is usually achieved by highly active HO_x radical chemistry initiated by low-pressure Hg lamp emissions (185 and 254 nm) (Li et al., 2015; Peng et al., 2015). This allows shorter residence times in 54 55 OFRs thus reducing gas and particle losses to walls, which can be very important in Teflon chambers (Cocker et al., 2001; Matsunaga and Ziemann, 2010; Zhang et al., 2014; Krechmer et al., 2016). In 56 57 addition, lower costs and small size (volumes of the order of 10 L) of OFRs allow better portability. These, 58 together with the ability to rapidly achieve high photochemical ages, are advantageous for field 59 applications.

60 These advantages of OFRs have led a number of atmospheric chemistry research groups (Lambe 61 and Jimenez, 2018) to deploy them in field (Hu et al., 2016; Ortega et al., 2016; Palm et al., 2016, 2017), 62 source (Ortega et al., 2013; Tkacik et al., 2014; Karjalainen et al., 2016; Link et al., 2016) and laboratory 63 studies (Kang et al., 2011; Lambe et al., 2013; Richards-Henderson et al., 2016; Lim et al., 2017). 64 However, the atmospheric relevance of VOC oxidation and SOA formation simulated in OFRs has 65 repeatedly been called into question, because the UV wavelengths most commonly used to initiate OFR chemistry do not exist in the troposphere, and because OH levels in OFRs (108–1010 molecules cm-3) can 66 67 be much higher than tropospheric levels (10⁶–10⁷ molecules cm⁻³; Mao et al., 2009; Stone et al., 2012) 68 To clarify this issue, a series of chemical kinetic modeling studies have been performed: Li et al. (2015) and Peng et al. (2015) established a radical chemistry and oxidation model whose predictions compare 69 70 well against laboratory experiments and found that OH can be substantially suppressed by external OH 71 reactants (e.g. SO₂, NO_x and VOCs externally introduced into the reactor); Peng et al. (2016) identified 72 low water mixing ratio (H₂O) and/or high external OH reactivity (OHR_{ext}, i.e. first-order OH loss rate 73 constant contributed by external OH reactants) as conditions that can cause significant non-74 tropospheric VOC reactions (e.g. through photolysis at 185 and/or 254 nm); Peng and Jimenez (2017) 75 studied NO_v chemistry in OFRs and showed that high-NO conditions, where organic peroxy radicals react more rapidly with NO than with HO₂, can only be realized by simple NO injection in a very narrow range 76 77 of physical conditions, whose application to investigating intermediate- and high-NO environments (e.g. 78 urban area) is limited; Peng et al. (2018) thus evaluated a few new techniques to maintain high-NO

79 conditions in OFRs and found injection of percent-level N₂O effective to achieve this goal.

80 While HO_x and NO_y chemistries have been extensively characterized in OFRs so far, organic peroxy 81 radical (RO₂) chemistry has yet to be considered in detail, as previous studies have only considered the 82 balance between RO₂+NO vs RO₂+HO₂. There has been some speculation that due to high OH 83 concentrations in OFRs, RO₂ concentration and lifetime might be significantly different from ambient 84 values, leading to dominance of RO₂ self/cross reactions and elimination of RO₂ isomerization pathways 85 (Crounse et al., 2013; Praske et al., 2018). Given the central role RO₂ plays in atmospheric chemistry 86 (Orlando and Tyndall, 2012; Ziemann and Atkinson, 2012) and the rapidly increasing use of OFRs, RO2 87 chemistry in OFRs needs to be studied in detail to characterize the similarities and differences between 88 their reactions conditions and those in the ambient atmosphere and traditional atmospheric reaction 89 chambers.

In this paper, we address this need via modeling. All major known fates of RO₂ in OFRs will be investigated and compared with those in typical chamber cases and in the atmosphere. This comparison will provide insights into the atmospheric relevance of RO₂ chemistry in atmospheric simulation reactors and allow the selection of experimental conditions with atmospherically relevant RO₂ chemistry in experimental planning.

95 2 Methods

96 Due to a variety of loss pathways of RO₂ and a myriad of RO₂ types, RO₂ chemistry is of enormous 97 complexity. We detail the RO₂ production and loss pathways of interest in this study, the approximations 98 used to simplify this complex problem, and steps to investigate it methodically. We briefly introduce the 99 base OFR design and the model, which are described in detail elsewhere (Kang et al., 2007; Peng et al., 100 2015, 2018).

101 2.1 Potential Aerosol Mass oxidation flow reactor (PAM OFR)

102 The concept of the base OFR design simulated in this study, the Potential Aerosol Mass (PAM) 103 reactor, was first introduced by Kang et al. (2007) The geometry of the most popular PAM OFR is a 104 cylinder of ~13 L volume. The PAM reactor we simulate is equipped with low-pressure Hg lamps (model 105 no. 82-9304-03, BHK Inc.) emitting UV light at 185 and 254 nm. When both 185 and 254 nm photons 106 are used to generate OH (termed "OFR185"), water vapor photolysis at 185 nm produces OH and HO₂. 107 Recombination of O_2 and $O(^{3}P)$, formed by O_2 photolysis at 185 nm, generates O_3 . $O(^{1}D)$, formed through 108 O₃ photolysis at 254 nm, reacts with water vapor and produces additional OH. 185 nm photons can be 109 filtered by installing quartz sleeves around the lamps. This converts the reactor into "OFR254" mode, 110 where photolysis of O_3 , which must be initially injected, is the only OH production route. The notation 111 "OFR254-X" is used to specify the initial amount of injected O₃ (X ppm) in OFR254. Lambe et al. (2017) 112 and Peng et al. (2018) have shown that initial injection of N_2O is able to maintain up to tens of ppb NO in both OFR185 and OFR254. These modes are denoted "OFR185-iN2O" and "OFR254-X-iN2O", or more 113 generally "OFR-iN₂O". In OFR254-iN₂O, O(¹D) generated from O₃ photolysis reacts with N₂O to generate 114 115 NO, while in OFR185-iN₂O, $O(^{1}D)$ is mainly supplied by N₂O photolysis at 185 nm (Peng et al., 2018). 116 RO₂ production and loss pathways 2.2

117	A single generic RO_2 is adopted for modeling purposes, to avoid the huge number of RO_2 types
118	that would complicate effective modeling and analysis. In OH-initiated VOC oxidation, RO_2 is primarily
119	produced via VOC+OH \rightarrow R (+H ₂ O) followed by R+O ₂ \rightarrow RO ₂ , where R is hydrocarbyl or oxygenated
120	hydrocarbyl radical. Since the second step is extremely fast in air (Atkinson and Arey, 2003), the first
121	step controls the RO_2 production rate, which depends on OH concentration and OHR_{ext} due to VOCs
122	(OHR _{voc} , see Appendix A for details). OHR _{voc} also includes the contribution from oxidation
123	intermediates of primary VOCs (e.g. methyl vinyl ketone and pinonic acid). When the information about
124	oxidation intermediates is insufficient to calculate OHR_{VOC} , OHR due to primary VOCs is used instead as
125	an approximant.
126	Table 1 lists all known RO $_2$ loss pathways. Among those, RO $_2$ photolysis, RO $_2$ +NO $_3$ and RO $_2$ +O $_3$
127	are not included in this study, since they are minor or negligible in OH-dominated atmospheres,
128	chambers and OFRs for the following reasons.
129	- The first-order RO_2 photolysis rate constant is of the order of 10^{-2} s ⁻¹ at the highest lamp setting in
130	OFRs (Kalafut-Pettibone et al., 2013) and of the order of 10^{-5} s ⁻¹ in the troposphere under the
131	assumption of unity quantum yield (Klems et al., 2015), while RO_2 reacts with HO_2 at >1 s ⁻¹ at the
132	highest lamp setting in OFRs and at $^2x10^{-3}$ s ⁻¹ in the troposphere. Note that in this study we assume
133	an average ambient HO_2 concentration of $1.5 x 10^8$ molecules cm ⁻³ (Mao et al., 2009; Stone et al.,
134	2012) and RO ₂ +HO ₂ rate constant of 1.5×10^{-11} cm ³ molecule ⁻¹ s ⁻¹ (Orlando and Tyndall, 2012).
135	- When daytime photochemistry is active, NO $_3$ is negligible in the atmosphere. In OFR-iN $_2$ O modes,
136	RO_2+NO_3 is negligible unless at very low H_2O and high UV intensity (abbr. UV hereafter), which
137	result in high O_3 to oxidize NO_2 to NO_3 and keep HO_2 minimized. However, very low H_2O causes
138	serious non-tropospheric organic photolysis (Peng et al., 2016) and thus these conditions are of no
139	experimental interest.
140	- In the atmosphere RO_2+O_3 is thought to play some role only at night (Orlando and Tyndall, 2012).
141	Similar conditions may exist in some OFR254 cases, if a very large amount of O_3 is injected and H_2O
142	and UV are kept very low to limit HO_x production. These conditions are obviously not $OH\text{-}$
143	dominated and not further investigated in this study.
144	Of the RO_2 fates considered in this study, RO_2 + HO_2 and RO_2 + NO and RO_2 + RO_2 have long been
145	known to play a role in the atmosphere (Orlando and Tyndall, 2012). Despite some small dependencies
146	on the type of RO_2, recommended general rate constants are available for RO_2+HO_2 and RO_2+NO
147	(Ziemann and Atkinson, 2012; Table 1). We use these recommended values for generic RO_2 in this study.
148	However, RO_2 self-/cross-reaction rate constants are highly dependent on the specific RO_2 types and can
149	vary over a very large range (10^{-17} – 10^{-10} cm ³ molecule ⁻¹ s ⁻¹). Unsubstituted primary, secondary and
150	tertiary RO ₂ self-react at ~10 ⁻¹³ , ~10 ⁻¹⁵ and ~10 ⁻¹⁷ cm ³ molecule ⁻¹ s ⁻¹ , respectively (Ziemann and Atkinson,
151	2012). Rate constants of cross-reactions between these RO_2 types also span this range (Orlando and
152	Tyndall, 2012). Substituted RO_2s have higher self-/cross-reaction rate constants (Orlando and Tyndall,
153	2012). RO_2 + RO_2 of highly substituted primary RO_2 can be as high as ~10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹ (Orlando
154	and Tyndall, 2012). Very recently, a few highly oxidized 1,3,5-trimethylbenzene-derived RO_2s were

155 reported to self-/cross-react at ~10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ (Berndt et al., 2018). In the present work, we 156 make a simplification to adapt to the generic RO₂ treatment by assuming a single self-/cross-reaction 157 rate constant for generic RO₂ in each case. Three levels of RO₂+RO₂ rate constants, i.e. 1x10⁻¹³, 1x10⁻¹¹, 158 and 1x10⁻¹⁰ cm³ molecule⁻¹ s⁻¹, are studied in this paper. The first level is referred to as "medium RO₂+RO₂" 159 as many other RO₂ can have self-/cross-reaction rate constants as low as 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹; the second level is defined as "fast RO2+RO2"; the last level is called "very fast RO2+RO2." No RO2+RO2 rate 160 161 constant lower than the medium level is investigated in the current work, although there are still a large 162 variety of RO2 whose self-/cross reactions are at lower rate constants, since at the medium level, 163 RO₂+RO₂ is already negligible in all the environments studied in this work, i.e. OFRs, chambers and the 164 atmosphere (see Section 3.1.1). Since there are only a few very specific examples for very fast RO₂+RO₂ 165 reported to date, we will not systematically explore this category but compare very fast RO2+RO2 as a 166 sensitivity case with the other two types of RO₂+RO₂ reactions.

167 Acyl RO_2 is considered as a separate RO_2 type (neither medium nor fast RO_2+RO_2) in this study 168 since its reaction with NO₂ can be a major sink of RO₂ in OFR (Peng and Jimenez, 2017). Thermal decomposition lifetimes of the product of RO2+NO2, i.e. acylperoxy nitrates, can be hours at laboratory 169 170 temperatures (Orlando and Tyndall, 2012; also taken into account in the current work, see Table 1), while OFR residence times are typically minutes. Besides, acyl RO2 react with many RO2 at ~10⁻¹¹ cm³ 171 172 molecule⁻¹ s⁻¹ (Orlando and Tyndall, 2012), similar to that of fast RO_2+RO_2 . We thus assume acyl RO_2 173 self-/cross-reaction rate constant to be also 1x10⁻¹¹ cm³ molecule⁻¹ s⁻¹ to facilitate the comparison with 174 fast RO₂+RO₂ results.

In OFRs operated at room temperature, acylperoxy nitrates barely decompose, while peroxy
nitrates of non-acyl RO₂ do decompose on a timescale of 0.1 s (Table 1). As a consequence, the
production and decomposition of peroxy nitrates of non-acyl RO₂ reach a steady state in OFRs, which
can be greatly shifted toward the peroxy nitrate side in cases with very high NO₂ (Peng and Jimenez,
2017; Peng et al., 2018).

180 RO₂+OH (Fittschen et al., 2014) and RO₂ isomerization (Crounse et al., 2013) have recently been 181 identified as possible significant RO_2 fates in the atmosphere. Reactions of the former type, according 182 to several recent experimental and theoretical studies (Bossolasco et al., 2014; Assaf et al., 2016, 2017b, 2017a; Müller et al., 2016; Yan et al., 2016), have similar rate constants (~1x10⁻¹⁰ cm³ molecule⁻¹ s⁻¹) 183 184 regardless of RO_2 type. Therefore, the reaction rate constant of generic RO_2 with OH is assigned as $1x10^{-1}$ 185 ¹⁰ cm³ molecule⁻¹ s⁻¹. RO₂ isomerization reactivity is highly structure-dependent (Crounse et al., 2013; 186 Praske et al., 2018) and rate constant measurements are still scarce, preventing us from assigning a 187 generic RO₂ isomerization rate constant. However, for generic RO₂, isomerization is generally not a sink 188 but a conversion between two RO_2 (both encompassed by the generic one in this study), as RO_2 isomerization usually generates an oxygenated hydrocarbyl radical, which rapidly recombines with O2 189 190 and forms another RO₂. Therefore, RO₂ isomerization is not explicitly taken into account in the modeling, 191 but is considered in the RO₂ fate analysis.

192 In summary, 6 pathways are included in the RO₂ fate analysis of this study. The need to explore

these 6 pathways for a high number of OFR, chamber, and atmospheric conditions makes presentation of results challenging. For clarity, we present the results in two steps. In the first step, only well-known RO₂ fates (reaction with NO₂, HO₂, NO and RO₂) will be included in the model. In the second step, the results of the first step will be used to guide the modeling and analysis of a more comprehensive set of significant RO₂ fates.

198 2.3 Model description

199 The model used in the present work is a standard chemical kinetic box model, implemented in the 200 KinSim 3.4 solver in Igor Pro 7 (WaveMetrics, Lake Oswego, Oregon, USA), and has been described in 201 detail elsewhere (Peng et al., 2015, 2018). Plug flow in the reactor with a residence time of 180 s is 202 assumed, since the effects of non-plug flow are major only in a narrow range of conditions of little 203 experimental interest and the implementation of laminar flow or measured residence time distribution 204 substantially increases computational cost (Peng et al., 2015; Peng and Jimenez, 2017). The reactions 205 of RO₂ discussed in Section 2.2 are added to the chemical mechanism. A generic slow-reacting VOC 206 (with the same OH rate constant as SO_2) is used as the external OH reactant. This slow rate also 207 represents the generation and consumption of latter-generation products that continue to react with 208 OH. The reason for this approximation has been discussed in detail in previous OFR modeling papers 209 (Peng and Jimenez, 2017; Peng et al., 2018). We exclude NO_y species, which are explicitly modeled, from 210 the calculation of OHRext; thus OHRext only includes non-NOy OHRext hereafter. As OHRext is dominated 211 by OHR_{VOC} in most OFR experiments, we use OHR_{ext} to denote OHR_{VOC} in OFRs (while for ambient and 212 chamber cases OHR_{VOC} is still used to exclude the contribution of CO etc.). The model was estimated to 213 achieve an accuracy of a factor of 2–3 when compared to field OFR experiments; better agreement can 214 generally be obtained for laboratory OFR experiments (Li et al., 2015; Peng et al., 2015).

215 Another key parameter in the model is the HO_x recycling ratio (β), defined in this study as the number of HO₂ molecule(s) produced per OH molecule destroyed by external OH reactants (Peng et al., 216 217 2015). This ratio depends on the products of RO₂ loss pathways. The main product of RO₂+HO₂ is usually 218 ROOH (Table 1), yielding no recycled HO₂, while the main products of RO₂+NO are RO and NO₂, the 219 former of which can often undergo extremely fast H-abstraction by O₂ to form a carbonyl and HO₂. From 220 VOC oxidation simulations by the fully explicit model GECKO-A (Aumont et al., 2005), we estimate $\beta^{\sim}0.3$ 221 in zero-NO OFRs. At the other extreme, where RO₂ is solely consumed by RO₂+NO, the product RO yields 222 HO₂ at a branching ratio close to 1, β^{-1} . For intermediate cases, we assume that β may be interpolated 223 as a linear function of $r(RO_2+NO)/[r(RO_2+NO)+r(RO_2+HO_2)]$, where $r(RO_2+NO)$ and $r(RO_2+HO_2)$ are the 224 local reactive fluxes of RO₂+NO and RO₂+HO₂.

In the present work, we model OFR185, OFR254-70, and OFR254-7 (including their -iN₂O variants).
We specify the same temperature and atmospheric pressure (295 K and 835 mbar, typical values in
Boulder, Colorado, USA) as our previous OFR modeling studies (Li et al., 2015; Peng et al., 2015, 2016,
2018; Peng and Jimenez, 2017). The explored physical condition space follows that of our previous OFRiN₂O modeling work (Peng et al., 2018). The only differences are that in this study we also include cases
without any N₂O injected (OFR185 and OFR254 only) and exclude OHR_{ext}=0 conditions, which produce

231 no RO₂. In detail, the explored physical condition space covers: H₂O of 0.07-2.3% (relative humidity of 232 2-71% at 295 K); UV photon flux at 185 nm (abbr. F185) of 1.0x10¹¹-1.0x10¹⁴ photons cm⁻² s⁻¹ 233 [corresponding photon flux at 254 nm (F254) of 4.2x10¹³-8.5x10¹⁵ photons cm⁻² s⁻¹]; OHR_{ext} of 1-1000 234 s⁻¹; N₂O mixing ratio (abbr. N₂O hereafter) of 0 and 0.02–20%. All model cases are logarithmically evenly 235 distributed except for N₂O=0 and F254. The latter is calculated based on the F185–F254 relationship for 236 the lamps simulated here (Li et al., 2015). 237 For the classification of conditions, the same criteria as in the OFR-iN₂O modeling study (Peng et 238 al., 2018) are adopted. In detail, high- and low-NO conditions are classified by r(RO₂+NO)/r(RO₂+HO₂). 239 In the current work, these reactive fluxes are explicitly tracked in the modeling instead of approximated 240 as in previous studies (Peng and Jimenez, 2017; Peng et al., 2018). The terms "good," "risky" and "bad" 241 are used to describe OFR operating conditions in terms of non-tropospheric organic photolysis, and are 242 defined based on the ratios of F185 and F254 exposure (F185_{exp} and F254_{exp}, i.e. integrated photon 243 fluxes over residence time) to OH exposure (OH_{exp}), as presented previously (Peng and Jimenez, 2017; 244 Peng et al., 2018). Briefly, under a given condition non-tropospheric photolysis is of different relative importance in the fate of each specific organic species: under good conditions, photolysis at 185 and/or 245 254 nm is unimportant for almost all VOCs; under bad conditions, non-tropospheric photolysis is 246 247 problematic for most VOC precursors, since significant photolysis of their oxidation intermediates at 248 185 and/or 254 nm is almost inevitable; and risky conditions can be problematic for some but not all 249 VOCs. Note that good/risky/bad conditions refer only to non-tropospheric organic photolysis and not to 250 whether RO₂ chemistry is atmospherically relevant. Table S1 summarizes our condition classification 251 criteria.

252 3 Results and discussion

In this section, the results are presented in two parts, i.e. first for the simulations with well-known pathways only, and secondly with all significant pathways, as proposed in Section 2.2. Then based on the results and their comparison with the atmosphere and chamber experiments, we propose guidelines for OFR operation to ensure atmospherically relevant RO₂ chemistry, as well as other chemistries already discussed in the previous studies (Peng et al., 2016, 2018), in OFRs.

258 3.1 Simulations with well-known pathways (RO₂+HO₂, RO₂+RO₂, RO₂+NO and RO₂+NO₂)

Due to significantly different reactivities of non-acyl and acyl RO₂, the results of these two types
 of RO₂ are shown separately.

261 3.1.1 Non-acyl RO₂

In this case non-acyl RO₂ have only three fates, i.e. RO₂+HO₂, RO₂+NO and RO₂+RO₂. The relative importance of these three fates can be shown in a triangle plot (Figure 1). The figure includes data points of OFR185 (including OFR185-iN₂O) and OFR254-70 (including OFR254-70-iN₂O), as well as several typical ambient and chamber studies (Ryerson et al., 2013; Nguyen et al., 2014; Ortega et al., 2014; Martin et al., 2016, 2017; Carlton et al., 2018; Wofsy et al., 2018). Conditions from the FIXCIT campaign (Nguyen et al., 2014) are used to represent chamber studies as they were designed for specific RO₂ fates within the limitations of current high-quality laboratory chambers (Table 2). Bad conditions

269 (in terms of non-tropospheric photolysis) are not shown on these plots because of the lack of 270 experimental interest. The triangle plots for OFR254-7 (including OFR254-7-iN₂O) in the same form 271 (Figure S1a,b) show no qualitative differences from the results of OFR254-70, implying that initial O_3 in 272 OFR254 modes has only minor impacts on RO₂ fate. We see this result not only for well-known non-acyl 273 RO2 fate, but also for the aspects discussed in the following sections. The similarity between OFR254 274 modes can be explained by the minor effects of a lower O₃ on HO_x at relatively low OHR_{ext} (Peng et al., 275 2015). Cases at higher OHRext often have stronger non-tropospheric photolysis (Peng et al., 2016) and 276 hence are more likely to be under bad conditions and are not shown in Figs. 1 and S1a,b. For simplicity, 277 this similarity is not discussed further. 278 An important feature confirmed in Fig. 1 is that OFR-iN₂O modes effectively realize conditions of 279 experimental interest with variable relative importance of RO₂+NO in RO₂ fate (Lambe et al., 2017; Peng 280 et al., 2018). Tuning initially injected N₂O can achieve this goal (Fig. 2). While it is possible to reduce RO₂+HO₂ in OFR185-iN₂O to negligible compared to RO₂+NO by increasing N₂O, this is not possible in 281 282 OFR254-70- iN_2O due to fast NO oxidation by the large amounts of O₃ added in the reactor. Nevertheless, 283 OFR254-70-iN₂O can still make RO₂+NO dominate over RO₂+HO₂ in RO₂ fate. OFR and chamber cases span a range of ~0-~100% in relative importance of RO₂+NO in RO₂ fate (Fig. 2), suggesting that both 284 285 chambers and OFRs are able to ensure the atmospheric relevance of RO₂+NO in RO₂ fate.

286 Another important feature that can be easily seen in Fig. 1 is that medium rate RO2+RO2 (and 287 hence also RO_2+RO_2 slower than 10^{-13} cm³ molecule⁻¹ s⁻¹) are of negligible importance in the fate of RO_2 (Fig. 1a,c) in OFR185 (including OFR185-iN2O), OFR254-70 (under most conditions, including OFR254-288 289 70-iN₂O), chambers and the atmosphere. Thus, a very large subset of RO₂ have only minor or negligible 290 contribution from RO₂+RO₂ to their fate. This is already known for ambient RO₂ fate (Ziemann and 291 Atkinson, 2012). The reason why this is also true in OFRs is that while OH is much higher than ambient 292 levels, HO₂ and NO (high-NO conditions only) are also higher. One can easily verify that steady-state RO₂ 293 concentrations (see Appendix A for details) would not deviate from ambient levels by orders of 294 magnitude. The reactive fluxes of RO2+RO2 in OFRs are thus not substantially different than in the 295 atmosphere, while RO₂+HO₂ and RO₂+NO (high-NO conditions only) are both faster in OFRs because of 296 higher HO₂ and NO. The combined effect is a reduced relative importance of RO₂+RO₂ in RO₂ fate in 297 OFRs compared to the atmosphere. The only exception in OFRs occurs at very high VOC precursor 298 concentrations (OHRext significantly >100 s⁻¹) in OFR254 (Fig. S2), where OH levels are not substantially 299 suppressed due to large amounts of O_3 (Peng et al., 2015). As a result, RO_2 concentration is remarkably 300 increased by strong production and RO₂+RO₂ relative importance increases roughly quadratically and 301 becomes significant.

The generally lower relative importance of RO₂+RO₂ in OFRs than in the atmosphere is more obvious for the fate of RO₂ with fast RO₂+RO₂ rate constants (Figs. 1b,d and 3). Although OFRs can reasonably reproduce RO₂ fates in low-VOC ambient environments (e.g. typical pristine and forested areas; Figs. 1b,d and 3) and low-OHR_{ext} chambers, OFR185 cannot achieve relative importance of RO₂+RO₂ significantly larger than 50%, corresponding to higher-VOC environments (e.g. P₁ in Fig. 1) and

307 high-OHR_{ext} chamber experiments (e.g. C_2 and C_5 in Fig. 1; the distribution for C_2 is also shown in Fig. 3). 308 In OFR254-70, a relative importance of RO₂+RO₂ as high as ~90% may be attained (Fig. S3). However, 309 this requires very high OHRext, which leads to medium (and slower) RO2+RO2 showing higher-than-310 ambient relative importance. In reality, fast RO₂+RO₂ all involve substituted RO₂, which almost certainly 311 arise from and coexist with unsubstituted RO2 (with slower self-/cross reactions). Therefore, very high 312 OHRext in OFR254 is not really suitable for attaining dominant RO₂+RO₂ conditions. In OFR185, a higher 313 OHRext generally also results in a higher RO₂+RO₂ relative importance because of higher RO₂ production 314 (Fig. S3). Nevertheless, higher OHRext is more likely to lead to risky or bad conditions (Fig. 3; Peng et al., 2016). It should be noted that although it is difficult to reliably achieve RO2+RO2 with a relative 315 316 importance larger than 50% in RO₂ fate in OFRs, the distributions of RO₂+RO₂ relative importance in 317 OFRs seems to be within a factor of 2 of those of field/aircraft campaigns (Fig. 3). 318 In the case of very fast RO_2+RO_2 , all features for fast RO_2+RO_2 discussed above are still present 319 (Fig. S1c,d). The only major difference between the results for fast RO_2+RO_2 and very fast RO_2+RO_2 is 320 the significantly higher relative importance of $RO_2 + RO_2$ in RO_2 fate in the latter case, which is expected. 321 In summary, the fast RO₂+RO₂ is not perfectly reproduced in OFRs in terms of relative importance in RO₂ 322 fate, but it is significant when this pathway is also important in the atmosphere. 323 The HO_x recycling ratio β (see Sect. 2.3) is one of the key factors determining HO₂ in the OFR 324 model, yet it is not well constrained. Although we make reasonable assumptions for it in the model 325 input (see Section 2.3 for details), a sensitivity study to explore its effects is also performed here. For 326 RO_2 with the fast self-/cross-reaction rate constant, we perform the simulations with the HO_x recycling 327 ratios fixed to a number of values from 0 (radical termination) to 2 (radical proliferation) in lieu of those 328 calculated under the assumptions described in Section 2.3. As expected, the contribution of RO₂+RO₂ 329 to RO₂ fate increases monotonically between β =2 and β =0 (Fig. S4), as the recycling of the competing 330 reactant HO₂ decreases. Nevertheless, the change in the average RO₂+RO₂ relative importance from β =0 331 to β =2 is generally within a factor of 2. Thus, it still holds that the RO₂+RO₂ relative importance in OFRs 332 is generally lower than in the atmosphere. Only at $\beta^{\sim}0$ may OFR185 theoretically attain a relative 333 importance of RO₂+RO₂ of ~70%, as in the P₁ case (pristine, but relatively high-VOC, Figure S5). Note 334 that β =0 for all VOC oxidation (including oxidation of intermediates) is extremely unlikely. In OFR254, even if RO_2+RO_2 may contribute up to ~100% to RO_2 fate at very high OHR_{ext} at $\beta=0$, these conditions 335 336 still also lead to significant RO₂+RO₂ in the fate of RO₂ that self-/cross-react more slowly, which is not 337 atmospherically relevant.

338 3.1.2 Acyl RO₂

As described in Section 2.1, the generic acyl RO₂ modeled in this study has the same loss pathways as RO₂ with the fast self-/cross-reaction rate constant, except for RO₂+NO₂, which can be a significant acyl RO₂ loss pathway in OFRs as well as both chambers and atmosphere. When this reaction is included in the simulations of acyl RO₂, it is a minor or negligible loss pathway of RO₂ at low N₂O, while it can be the dominant fate of acyl RO₂ at high N₂O (Fig. 4). In general, the RO₂+NO₂ relative importance increases with initial N₂O. This is always true in OFR254-70-iN₂O between N₂O=0.02% and

345 N₂O=20%, while in OFR185-iN₂O, the average relative contribution of RO₂+NO₂ to RO₂ fate starts to 346 decrease at N₂O~10%, because RO₂+NO regains some importance. This results from the HO_x 347 suppression caused by high NO_y and strong NO production at high N₂O. Strong NO production increases 348 its concentration and suppresses HO_x under these conditions, limiting the conversion of NO to NO₂. 349 Because of the strong OH suppression by high NO_y at N₂O≥10%, these conditions are not desirable (Peng 350 et al., 2018).

351 The only difference between the simulations of acyl RO₂ and of the fast-self-/cross-reacting non-352 acyl RO₂ is the quasi-irreversible reaction RO₂+NO₂ \rightarrow RO₂NO₂, whose effects are revealed by a 353 comparison of the triangle plots of the RO₂ fates in each case (Figs. 1b,d and S6). RO₂+NO₂ is clearly 354 dominant in acyl RO₂ fate in OFRs as long as RO₂+NO plays some role (not necessarily under high-NO 355 conditions). In OFR185-iN₂O, the relative importance of RO₂+RO₂ in the sum of the HO₂, NO and RO₂ 356 pathways is reduced (Fig. S6a), compared to that of non-acyl RO₂ with the fast RO₂+RO₂ (Fig. 1b), 357 because RO₂+NO₂ decrease acyl RO₂ concentration. Such a decrease is not significant in OFR254-70-358 iN_2O (Fig. S6b, compared to Fig. 1d), since for non-acyl RO_2 , it is already stored in the form of RO_2NO_2 359 as RO2 reservoir. In other words, the high initial O3 greatly accelerates NO-to-NO2 oxidation, and shifts 360 the equilibrium $RO_2+NO_2 \leftrightarrow RO_2NO_2$ far to the right even for non-acyl RO_2 .

361 RO₂+NO₂ is an inevitable sink of most acyl RO₂ in high-NO_x OFRs. Its contribution to acyl RO₂ fate 362 in OFRs is often higher than in urban atmospheres, where the relative amounts of NO and NO₂ vary 363 overtime. At midday, most NO is usually oxidized to NO₂ in urban atmospheres and RO₂+NO₂ dominates 364 acyl RO₂ fate, as in high-NO_x OFRs. During morning rush hours and/or near major NO sources, NO may 365 be significantly more abundant than NO₂ and RO₂+NO is likely the dominant acyl RO₂ loss pathway, 366 which cannot be simulated in OFRs with the current range of techniques.

367 Acyl RO₂ are not the dominant type among RO₂s under most conditions in OFRs, chambers and the atmosphere, since their formation usually requires multistep (at least 2 steps) oxidation via specific 368 369 pathways leading to an oxidized end group (i.e. aldehyde and then acylperoxy). However, acyl RO2 can 370 still be a major (very roughly 1/3) source of RO₂ at ages of several hours or higher according to 371 estimations made using the GECKO-A model in urban and forested atmospheres. Therefore, acyl RO2 372 chemistry in high-NO OFR can significantly deviate from that in an urban atmosphere with NO 373 dominating NO_x, and can be relevant to an urban atmosphere with NO₂ dominating NO_x. On the other 374 hand, a few theoretical studies suggested that H-abstraction by the acylperoxy radical site from 375 hydroperoxy groups close to the acylperoxy site in multifunctional acyl RO₂ may be extremely fast 376 (Jørgensen et al., 2016; Knap and Jørgensen, 2017). If these theoretical predictions are sufficiently 377 accurate, these acyl RO₂ may exclusively undergo intramolecular H-shift to form non-acyl RO₂ or other 378 radicals and prevent RO₂+NO₂ from occurring even at very high (ppm-level) NO₂. However, this type of 379 RO2 is structurally specific and may not have strong impacts on the overall acyl RO2 chemistry.

380 **3.2** Simulations with all significant pathways

Since RO₂ isomerization does not significantly affect the generic RO₂ concentration, the two RO₂
 fates that were recently found to be potentially important, i.e. RO₂+OH and RO₂ isomerization, can be

383 discussed separately.

384 3.2.1 RO₂+OH

385 In the troposphere, RO₂+OH is a minor (at low NO) or negligible (at high NO) RO₂ loss pathway 386 (Fittschen et al., 2014; Assaf et al., 2016; Müller et al., 2016), as its rate constant is roughly an-order-of-387 magnitude higher than that of RO_2+HO_2 (Table 1) while ambient OH concentration is on average 2-388 orders-of-magnitude lower than that of HO₂ (Mao et al., 2009; Stone et al., 2012; Fig. 5). We will not 389 discuss RO₂+OH in the high-NO cases in detail. Simply put, the relative importance of RO₂+OH is 390 generally negatively correlated with input N₂O in OFR-iN₂O, as NO_x suppresses OH and the relative 391 importance of RO2+NO increases. Below, we focus on low-NO (actually, for simplicity, zero-NO) 392 conditions.

393 At N₂O=0, it would be ideal if an HO₂-to-OH ratio identical to the ambient values was realized in 394 OFRs. In OFR185 cases with medium RO₂+RO₂, HO₂-to-OH ratio around 100 occurs at a combination of low H₂O (on the order of 0.1%), low F185 (on the order of 10¹¹ photons cm⁻² s⁻¹), and medium OHR_{ext} 395 (10–100 s⁻¹); and also at medium F185 (~10¹² photons cm⁻² s⁻¹) combined with very high OHR_{ext} (~1000 396 397 s⁻¹, Fig. S7). Under both sets of conditions, relatively high external OH reactants suppress OH, whose production is relatively weak, and convert some OH into HO₂ through HO_x recycling in organic oxidation 398 399 (e.g. via alkoxy radical chemistry). The reason why such an OH-to-HO2 conversion is needed to attain an 400 ambient-like HO₂-to-OH ratio is that OFR185 is unable to achieve this via the internal (mainly assisted 401 by O₃) interconversion of HO_x. This inability is most evident when F185 (10^{13} - 10^{14} photons cm⁻² s⁻¹) and H_2O (on the order of 1%) are high and OHR_{ext} is low (<~10 s⁻¹; Fig. S7). Under these conditions, OH 402 403 production by H_2O photolysis is so strong that the HO_2 -to-OH ratio is lowered to ~1, since OH and H 404 (which recombines with O_2 to form HO_2) are produced in equal amounts from H_2O photolysis. As the 405 RO₂+OH rate constant is only roughly 1-order-of-magnitude higher than that for RO₂+HO₂, slightly lower 406 HO₂-to-OH ratios (e.g. ~30) suffice to keep RO₂+OH minor in this case. A combination of UV and H₂O 407 that are not very high and a moderate OHRext that is able to convert some OH to HO2 and somewhat 408 elevate the HO₂-to-OH ratio results in minor relative importance RO₂+OH (Figs. S7 and S8).

409 In OFR254-70, it is more difficult to reach an HO₂-to-OH ratio of ~100, which can only be realized 410 at a combination of very low H_2O and F254 ($\sim 0.07\%$ and $\sim 5x10^{13}$ photons cm⁻² s⁻¹, respectively) and very 411 high OHR_{ext} (~1000 s⁻¹). This is mainly due to high O₃ in OFR254-70, which controls the HO_x 412 interconversion through HO₂+O₃ \rightarrow OH+2O₂ and OH+O₃ \rightarrow HO₂+O₂ and makes both OH and HO₂ more 413 resilient to changes due to OHRext (Peng et al., 2015). Even without H₂O photolysis at 185 nm as a major 414 HO₂ source, the HO_x interconversion controlled by O₃ in OFR254-70 still brings HO₂-to-OH ratio to ~1 in 415 the case of minimal external perturbation (see the region at the highest H_2O and UV and $OHR_{ext}=0$ in 416 the OFR254-70 part of Fig. S7). This ratio cannot be easily elevated in OFR254-70 because of the resilience of OH to suppression for this mode (Peng et al., 2015). Thus, this ratio is relatively low (<30) 417 418 under most conditions (Fig. S7), and consequently (and undesirably), RO₂+OH is a major RO₂ fate in 419 OFR254-70. There is an exception at relatively low H₂O and UV with very high OHR_{ext} (Fig. S8), however 420 these conditions are undesirable in terms of non-tropospheric organic photolysis (Peng et al., 2016).

421 Only the results of RO₂ with the medium RO₂+RO₂ are discussed in this subsection. Those of RO2 422 with the fast RO₂+RO₂ are not shown as they are not qualitatively different. In OFR185, for the fast-self-423 /cross-reacting RO2, RO2+RO2 is relatively important at high OHRext (>~100 s⁻¹; Fig. S3), while RO2+OH is 424 a major RO₂ fate at low OHR_{ext} (generally on the order of 10 s⁻¹ or lower) and relatively high H₂O and UV 425 (Fig. S8). These two ranges of conditions are relatively far away from each other, and hence there is no 426 condition under which RO₂+RO₂ and RO₂+OH are both major pathways that compete, which simplifies 427 understanding RO₂ fate. However, in OFR254-70, some conditions may lead to both significant RO₂+RO₂ (for the fast-self-/cross-reacting RO_2) and RO_2 +OH (e.g. $H_2O^{-0.5\%}$, F254~1x10¹⁵ photons cm⁻² s⁻¹ and 428 429 OHRext^{~1}00 s⁻¹). Nevertheless, as long as RO₂+OH plays a major role, these conditions do not bear much 430 experimental interest and thus do not need to be discussed in detail.

431 3.2.2 RO₂ isomerization

RO₂ isomerization is a first-order reaction. For this type of reactions to occur, RO₂ does not need
any other species but only a sufficiently long lifetime against all other reactants combined, as most RO₂
isomerization rate constants are <10 s⁻¹. Radical (OH, HO₂, NO etc.) concentrations in OFRs are much
higher than ambient levels and may shorten RO₂ lifetimes compared to those in the troposphere.
Possibly reduced RO₂ lifetimes naturally raise concerns over the potentially diminished importance of
RO₂ isomerization in OFRs.

438 In this section we examine generic RO₂ lifetimes against all reactions (calculated without RO₂ 439 isomerization taken into account) in OFR (including OFR-iN₂O) cases (for the medium RO₂+RO₂ case) and 440 compare them with the RO₂ lifetimes in recent major field/aircraft campaigns in relatively clean 441 environments and a field campaign in an urban area (CalNex-LA), as well as a low-NO chamber 442 experiment (Fig. 6). Indeed, RO₂ lifetime in clean ambient cases and in chambers with near-ambient 443 radical levels are generally much longer than those in OFRs. The RO₂ lifetime distribution of the explored 444 good and risky cases in OFR254-70 (including OFR254-70-iN₂O) barely overlaps with the ambient and 445 chamber cases, while in OFR185 (including OFR185-iN2O), RO2 lifetime can be as long as ~10 s, which is longer than in urban areas and roughly at the lower end of the range of ambient RO₂ lifetime in clean 446 447 environments (Fig. 6). The longest RO₂ lifetime in OFR185 occurs at very low F185 (on the order of 10¹¹ 448 photons cm⁻² s⁻¹) and H₂O (\sim 0.1%; Fig. S9), where HO_x is low. In OFR254-70, for RO₂ to survive for \sim 10 s, 449 in addition to very low UV and H₂O, high OHR_{ext} is also needed (Fig. S9). High-OHR_{ext} conditions in 450 OFR254-70 cause OH suppression and a decrease in HO_x concentration, and hence result in relatively 451 long RO₂ lifetimes. However, the strong OH suppression is likely to give bad conditions (high contribution 452 of non-tropospheric photolysis).(Peng et al., 2016) Low-OHRext conditions do not lead to long RO2 453 lifetimes in OFR254-70 even at very low F254 and H₂O, since O₃-assisted HO_x recycling prevents a very 454 low HO_x level even if HO_x primary production is low.(Peng et al., 2015)

455 An RO₂ lifetime (without RO₂ isomerization included) of 10 s leads to a relative importance of 456 isomerization of 50% in the total fate (including all loss pathways) of RO₂ with an isomerization rate 457 constant of 0.1 s⁻¹, which is a typical order of magnitude for isomerization rate constants of 458 multifunctional RO₂ with hydroxyl and hydroperoxy substituents (Fig. 6; Crounse et al., 2013; D'Ambro

459 et al., 2017; Praske et al., 2018). Although a 50% relative importance of isomerization under some OFR 460 conditions is still lower than those in relatively low-NO ambient environments and low-NO chambers, 461 this relative importance should certainly be deemed major and far from negligible as some have 462 speculated (Crounse et al., 2013). Other monofunctional RO₂ (with peroxy radical site only) and 463 bifunctional RO₂ with peroxy radical site and a carbonyl group isomerize so slowly (\sim 0.001–0.01 s⁻¹) that 464 their isomerizations are minor or negligible loss pathways in the atmosphere, chambers and OFRs with 465 RO₂ lifetimes around 10 s (Fig. 6). Isomerizations of other types of multifunctional RO₂ (e.g. 466 multifunctional acyl RO2 with hydroxyl and hydroperoxy substituents at favorable positions) are extremely fast (rate constants up to 10⁶ s⁻¹; Jørgensen et al., 2016; Knap and Jørgensen, 2017) and 467 468 always dominate in their fates in the relatively low-NO atmosphere and chambers and OFRs with RO2 469 lifetimes around 10 s.

470 In the discussion about RO₂ isomerization above (as in the RO2+OH exploration in Section 3.2.1), 471 we only examine low-NO (or zero-NO for simplicity) conditions with medium RO₂+RO₂. In high-NO 472 environments, e.g. polluted urban atmospheres with NO of at least ~10 ppb and high-NO OFRs in the 473 iN₂O modes, RO₂ lifetime is so short that isomerization is no longer a major fate for any but the most 474 rapidly isomerizing multifunctional RO₂ discussed above. NO measured in Los Angeles during the 475 CalNex-LA campaign (Ortega et al., 2016) was only ~1 ppb, which would to allow RO₂ to survive for a 476 few seconds and isomerize (Fig. 6), even in an urban area.

477 The OFR simulations for the discussions about RO₂ isomerization are the same as those 478 conducted to study RO₂+OH, i.e. the ones with the medium RO₂+RO₂ and RO₂+OH included. For fast RO₂ 479 self-/cross-reaction cases, RO₂ lifetimes may be significantly shorter than for RO₂ with the medium self-480 /cross-reaction rate constant at high OHRext (>~100 s⁻¹) in OFR185 (Fig. S3). These high-OHRext conditions 481 are likely to be risky or bad (of little experimental interest)(Peng et al., 2016) and thus do not need to 482 be discussed further in detail. OFR254-70 (a zero-NO mode) does not generate good or risky (of at least 483 some experimental interest in terms of non-tropospheric organic photolysis) conditions also leading to 484 low-NO-atmosphere-relevant RO2 lifetimes (Fig. 6). RO2 with faster self-/cross-reaction rate constants 485 have even shorter lifetimes in OFR254-70 and will not be discussed further.

486 3.3 Guidelines for OFR operation

487 In this subsection we discuss OFR operation guidelines for atmospherically relevant RO₂ chemistry, 488 with a focus on OFR185 and OFR254 (zero-NO modes). Since RO₂+HO₂ and RO₂+NO both can vary from 489 negligible to dominant RO₂ fate in OFRs, chambers and the atmosphere (Figs. 1 and 2), these two 490 pathways are not a concern in OFR atmospheric relevance considerations. Neither is the RO₂+RO₂ a 491 major concern. Medium or slower RO₂+RO₂ is minor or negligible in the atmosphere and chambers, as 492 well as in OFRs, as long as high OHRext is avoided in OFR254 (Fig. S2). Fast RO₂+RO₂ is somewhat less 493 important in OFRs than in the atmosphere (Figs. 1b,d and 3), but is still qualitatively atmospherically 494 relevant, given the uncertainties associated with the HO_x recycling ratios of various reactive systems 495 and the huge variety of RO₂ types (and hence RO₂+RO₂ rate constants).

496 Accordingly, we focus on the atmospheric relevance of RO₂+OH and RO₂ isomerization, i.e. their

497 relative contributions close to ambient values. Under typical high-NO conditions, RO₂+NO dominates 498 RO₂ fate and RO₂+OH is negligible. High NO also shortens RO₂ lifetime enough to effectively inhibit RO₂ 499 isomerization. Both the dominance of RO₂+NO and the inhibition of RO₂ isomerization also occur in the 500 atmosphere and in chambers, so high-NO OFR operation (typically NO>10 ppb) represents these 501 pathways realistically. Some care is, however, required with the RO₂+OH and RO₂ isomerization 502 pathways at low NO. Since RO2+HO2 in OFRs is always a major RO2 fate at low NO and RO2+RO2 are 503 generally not problematic, RO₂+OH and RO₂+HO₂ can be kept atmospherically relevant as long as HO₂-504 to-OH ratio is close to 100 (the ambient average). In addition, RO₂ lifetime (calculated without RO₂ 505 isomerization taken into account) should be at least around 10 s. 506 Practically, OH production should be limited to achieve this goal. Too strong OH production at high 507 H₂O and UV can elevate OH and HO₂ concentrations, which shortens RO₂ lifetime, and decreases the 508 HO₂-to-OH ratio to ~1 (see Sect. 3.2.1). OH production is roughly proportional to both H₂O and UV (Peng 509 et al., 2015), so can be limited by reducing either or both. However, H₂O and UV have different effects 510 on non-tropospheric organic photolysis. At a certain OHRext, OH production rate roughly determines OH 511 concentration in OFRs. Reducing UV decreases both OH and UV roughly proportionally (Peng et al., 512 2015), and hence changes in F185_{exp}/OH_{exp} and F254_{exp}/OH_{exp} are small (Peng et al., 2016); i.e. non-513 tropospheric organic photolysis does not become significantly worse if UV is reduced. By contrast, if H₂O 514 is reduced without also decreasing UV, F185_{exp}/OH_{exp} and F254_{exp}/OH_{exp} both increase, signifying 515 stronger relative importance of non-tropospheric photolysis. Therefore, reducing UV is strongly preferred as an OH production limitation method, and is effective in making both RO₂+OH and RO₂ 516 517 isomerization more atmospherically relevant. 518 To further explore the effects of UV reduction on the RO₂+OH (Fig. 5) and RO₂ isomerization (Fig. 519 6) pathways, we divide our OFR case distributions into higher-UV and lower-UV classes, with the 520 boundary being the mid-level (in logarithmic scale) UV in the explored range. The distributions for 521 lower-UV conditions (solid lines in Figs. 5 and 6) are clearly closer to the ambient cases (i.e. HO₂-to-OH 522 ratio closer to 100, smaller RO₂+OH relative importance and longer RO₂ lifetime). 523 Since OFR254 is unable to achieve conditions with both at least some experimental interest (i.e. 524 with sufficiently low non-tropospheric photolysis) and atmospherically relevant RO2 lifetime, we now

discuss preferable conditions for OFR185 only. As F185 close to or lower than 10^{12} photons cm⁻² s⁻¹ is 525 526 needed for RO₂ lifetime to be around 10 s or longer (Fig. S9), the OH concentration under preferable 527 conditions for atmospherically relevant RO₂ chemistry (~10⁹ molecules cm⁻³ or lower) is much lower than the maximum that OFR185 can physically reach (~10¹⁰–10¹¹ molecules cm⁻³). Furthermore, lower 528 529 OH production leads to higher susceptibility to OH suppression by external OH reactants (Peng et al., 530 2015), which can create non-tropospheric photolysis problems (Peng et al., 2016). We thus recommend as high H₂O as possible to maintain practically high OH while allowing lower UV to limit the importance 531 532 of non-tropospheric organic photolysis. 533 The performance of various OFR185 conditions at high H_2O (2.3%) is illustrated in Fig. 7 as a

534 function of F185 and OHR_{ext} . The three criteria for the performance, i.e. RO_2 lifetime (calculated without

535 RO₂ isomerization considered), relative importance of RO₂+OH and log(F254_{exp}/OH_{exp}) (a measure of 536 254 nm non-tropospheric photolysis, which is usually worse than that at 185 nm; Peng et al., 2016) are 537 shown. At F185 of ~10¹¹–10¹² photons cm⁻² s⁻¹ and OHR_{ext} around or lower than 10 s⁻¹, all three criteria 538 are satisfied. Since UV (and hence OH production) is relatively low, a low OHRext (~10 s⁻¹) is required to 539 avoid heavy OH suppression and keep conditions good (green area in the bottom panel of Fig. 7). Nevertheless, risky conditions [log(F254_{exp}/OH_{exp})<7; light red area in the bottom panel of Fig. 7] may 540 541 also bear some experimental conditions depending on the type of VOC precursors (specifically on their 542 reactivity toward OH and their photolability at 185 and 254 nm, and the same quantities for their 543 oxidation intermediates; Peng et al., 2016; Peng and Jimenez, 2017). Thus, higher OHR_{ext} (up to ~100 s⁻¹ 544 ¹) may also be considered in OFR experiments with some precursors (e.g. alkanes). In practice, the 545 preferred conditions may require F185 even lower than that our lowest simulated lamp setting (Li et al., 546 2015). Such a low F185 may be realized e.g. by partially blocking 185 nm photons using non-transparent 547 lamp sleeves with evenly placed holes that allow some 185 nm transmission.

548 Under these preferred conditions, OH concentration in OFR185 is ~10⁹ molecules cm⁻³, equivalent 549 to a photochemical age of ~1 eq. d for a typical residence time of 180 s. This is much shorter than ages corresponding to the maximal oxidation capacity of OFRs (usually eq. weeks or months; Peng et al., 550 551 2015) but it is similar to the ages of the maximal organic aerosol formation in OFRs processing ambient 552 air (Tkacik et al., 2014; Ortega et al., 2016; Palm et al., 2016). We show the maximal SOA formation case 553 in the OFR185 experiments in the BEACHON-RoMBAS campaign in the Rocky Mountains (Palm et al., 554 2016) as an example (Figs. 5 and 6). During the campaign, relative humidity was high (>60% in most of 555 the period), OHRext was estimated to be relatively low (~15 s⁻¹) in this forested area, and UV in the OFR 556 was limited in the case of the maximal SOA formation age (~0.7 eq. d). All these physical conditions 557 were favorable for atmospherically relevant RO₂ fate (Figs. 5 and 6). RO₂+OH was minor in this case and 558 the relative importance of RO_2 isomerization in RO_2 fate in the OFR was within a factor of ~ 2 of that in 559 the atmosphere for all RO₂ (regardless of isomerization rate constant) during the BEACHON-RoMBAS 560 campaign (Fig. 6). The effect of UV on the relative importance of RO₂ isomerization for this example is 561 also illustrated in Fig. 6. In the sensitivity case with a lower age, a lower UV results in a larger 562 contribution of isomerization to RO₂ fate, while the relative importance of RO₂ isomerization is lower in a sensitivity case with an age 3 times of that of the maximal SOA formation. In an extreme sensitivity 563 564 case with the highest UV in the range of this study (with an age of 4 eq. mo), RO_2 isomerization becomes 565 minor or negligible for all RO₂ except extremely rapidly isomerizing ones.

The discussions above indicate that the atmospheric relevance of gas-phase RO₂ chemistry in OFRs deteriorates as the photochemical age over the whole residence time (180 s) increases. To reach longer ages, longer residence times (with UV being still low) can be adopted. However, OFR residence times > 10 min tend to be limited by the increasing importance of wall losses (Palm et al., 2016). As a result, longer residence times can only increase photochemical age in OFRs up to about a week. This implies that in OFR cases with ages much higher than that of maximal SOA formation (corresponding to the heterogeneous oxidation stage of SOA), the atmospheric relevance of gas-phase RO₂ chemistry in the

573 SOA formation stage (before the age of maximal SOA formation) often cannot be ensured. However, 574 under those conditions typically new SOA formation is not observed, and the dominant process 575 affecting OA is heterogeneous oxidation of the pre-existing OA (Palm et al., 2016). If the heterogeneous 576 oxidation of the newly formed SOA is of interest, a two-stage solution may be required. Lower UV can 577 be used in the SOA formation stage to keep the atmospheric relevance of the gas-phase chemistry, while 578 high UV can be used in the heterogeneous aging stage to reach a high equivalent age. The latter 579 approach is viable since heterogeneous oxidation of SOA by OH is slow and particle-phase chemistry is 580 not strongly affected by gas-phase species except OH, when OH is very high (Richards-Henderson et al., 581 2015, 2016; Hu et al., 2016). This two-stage solution may be realized through a cascade-OFR system or 582 UV sources at different intensities within an OFR (e.g. spliced lamps).

Praske et al. (2018) measured RO₂ isomerization rate constants at 296 and 318 K and observed an increase in the rate constants by a factor of ~5 on average. A 15 K temperature increase in OFRs would lead to RO₂ isomerization being accelerated by a factor of ~3, while other major gas-phase radical reactions have weak or no temperature-dependence. As a consequence, the relative importance of RO₂ isomerization in RO₂ fate in OFRs can be elevated and closer to atmospheric values (Fig. 6). Nevertheless, a 15 K increase in temperature may also result in some OA evaporation (Nault et al., 2018).

589 As discussed above, high H_2O , low UV and low OHR_{ext} are recommended for keeping the 590 atmospheric relevance of RO₂ chemistry in OFRs. These three requirements are also part of the 591 requirements for attaining good high-NO conditions in OFR185-iNO (the OFR185 mode with initial NO 592 injection; Peng and Jimenez, 2017). In addition to these three, an initial NO of several tens of ppb is also 593 needed to obtain a good high-NO condition in OFR185-iNO. Under these conditions, RO₂+NO dominates 594 over RO_2+HO_2 , and hence RO_2+OH ; UV is low, the photochemical age is typically ~1 eq. d, and RO_2 595 lifetime can be a few seconds. Therefore, these conditions are a good fit for studying the environments 596 in relatively clean urban areas, such as Los Angeles during CalNex-LA (Ortega et al., 2016), where NO is 597 high enough that the dominant bimolecular fate of RO2 is RO2+NO but low enough to maintain RO2 598 lifetimes that allow most common RO2 isomerizations.

599 As RO₂ fate in OFRs is a highly complex problem and it can be tricky to find suitable physical 600 conditions to simultaneously achieve experimental goals and keep the atmospheric relevance of the 601 chemistry in OFRs, we provide here an OFR RO₂ Fate Estimator (in Supplement) to qualitatively aid 602 experimental planning. The OFR RO2 Fate Estimator couples the OFR Exposure Estimator(Peng et al., 603 2016, 2018) to a General RO₂ Fate Estimator (also in Supplement, see Fig. S10 for a screenshot of its 604 layout). The OFR Exposure Estimator updated in this study also contains estimation equations for the 605 HO₂-to-OH ratio in OFR185 (in OFR254, RO₂ fate is always atmospherically irrelevant at low NO, while 606 at high NO, RO₂+NO dominates and a detailed RO₂ fate analysis is no longer needed). In the General RO₂ Fate Estimator, all RO₂ reactant concentrations and all RO₂ loss pathway rate constants can be specified. 607 608 Thus the General RO₂ Fate Estimator can also be applied to the atmosphere and chamber experiments, 609 in addition to OFRs. When applied to OFRs, the General RO₂ Fate Estimator is provided by the OFR RO₂ 610 Fate Estimator with quantities estimated in the OFR Exposure Estimator (e.g. OH and NO). RO2

643

644

611	concentration and fate are calculated according to Appendix A in the RO_2 Fate Estimators.
612	4 Conclusions
613	We investigated RO_2 chemistry in OFRs with an emphasis on its atmospheric relevance. All
614	potentially major loss pathways of RO_2 , i.e. reactions of RO_2 with HO_2 , NO and OH , that of acyl RO_2 with
615	NO_2 , self-/cross-reactions of RO_2 and RO_2 isomerization, were studied and their relative importance in
616	RO_2 fate were compared to those in the atmosphere and chamber experiments. OFRs were shown to
617	be able to tune the relative importance of RO_2+HO_2 vs. RO_2+NO by injecting different amounts of N_2O .
618	For many RO_2 (including all unsubstituted non-acyl RO_2 and substituted secondary and tertiary RO_2),
619	their self-reactions and the cross-reaction between them are minor or negligible in the atmosphere and
620	chambers. This is also the case in OFR185 (including OFR185-iN_2O) and OFR254-iN_2O, however those
621	RO_2 self-/cross-reactions can be important at high precursor concentrations (OHR _{ext} >100 s ⁻¹) in OFR254.
622	For substituted primary RO_2 and acyl RO_2 , their self-/cross-reactions (including the ones with RO_2 whose
623	self-reaction rate constants are slower) can play an important role in RO_2 fate in the atmosphere and
624	chambers, and may also be major RO_2 loss pathways in OFRs, although they are somewhat less
625	important in OFRs than in the atmosphere. Acylperoxy nitrates are the dominant sink of acyl RO_2 at high
626	NO_{x} in OFRs, while only a minor reservoir of acyl RO_{2} in the atmosphere under most conditions except
627	in urban atmospheres, where acylperoxy nitrate formation can be the dominant acylperoxy loss
628	pathway when most NO is oxidized to NO_2. In chambers, most acyl RO_2 can be stored in the form of
629	acylperoxy nitrates if NO_2 is very high (hundreds of ppb to ppm level).
630	Under typical high-NO conditions, RO_2 +NO dominates RO_2 fate and RO_2 lifetime is too short to
631	allow most RO_2 isomerizations, regardless of whether in the atmosphere, chambers or OFRs, thus raising
632	no concern over the atmospheric relevance of the $OFR\ RO_2$ chemistry. However, under low-NO
633	conditions, OFR254 cannot yield any physical conditions leading to sufficiently long RO_2 lifetime for its
634	isomerization because of the high radical levels and their resilience to external perturbations in OFR254.
635	In OFR185 with strong OH production (and hence high OH), RO_2 +OH and RO_2 isomerization may strongly
636	deviate from the atmosphere (becoming important and negligible, respectively, for relatively rapidly
637	isomerizing RO_2). To attain both atmospherically relevant VOC and RO_2 chemistries, OFR185 requires
638	high H ₂ O, low UV and low OHR_{ext} , which conditions ensure minor or negligible RO_2 +OH and a relative
639	importance of RO_2 isomerization in RO_2 fate in OFRs within x~2 of that in the atmosphere but limit the
640	maximal photochemical age that can be reached to a few eq. days. This age roughly covers SOA
641	formation in ambient air up to its maximum. To reach a much higher age for studying SOA
642	functionalization/fragmentation by heterogeneous oxidation, a sequence of low-UV SOA formation

atmosphere, i.e. high-NO but not sufficiently high to inhibit common RO₂ isomerization.

Finally, RO₂ chemistry is not only highly complex but also plays a central and instrumental role in
 atmospheric chemistry, in particular VOC oxidation and SOA formation. For all experiments conducted
 with atmospheric chemistry simulation apparatus (chambers, flow reactors etc.), an atmospherically

followed by a high UV condition (in the same reactor or in cascade reactors) would be needed. High H_2O , low UV and low OHR_{ext} in the OFR185-iNO mode can achieve conditions relevant to clean urban

649	relevant RO ₂ chemistry is crucial to meaningful experimental results. However, most literature studies
650	did not publish experimental data that are sufficient for estimating RO_2 fate. The FIXCIT chamber
651	experiment campaign is one of the few exceptions where comprehensive data were reported (Nguyen
652	et al., 2014) and used for the RO_2 fate analysis in the present work. We recommend measuring and/or
653	estimating and reporting OH, HO_2, NO, NO_2 and OHR_{VOC} (or initial precursor composition at least)
654	whenever possible, for all future atmospheric laboratory and field experiments for organic oxidation to
655	facilitate the analysis of RO_2 fate and the evaluation of its atmospheric relevance.
656	
657	Appendix A: Steady-state approximation for generic RO ₂
658	The production rate of a generic RO_2 is almost identical to the VOC consumption rate, since the
659	second step of the conversion chain VOC \rightarrow R \rightarrow RO ₂ is extremely fast. Therefore, the generic RO ₂
660	production rate, P, can be expressed as follows:
661	$P = \sum_{i} k_{i} c_{i} \cdot OH = OHR_{VOC} \cdot OH $ (A1)
662	where OH is OH concentration and c_i and k_i are respectively the concentration and the reaction rate
663	constant with OH of the <i>i</i> th VOC. OHR _{VOC} is the total OHR due to VOC and equal to $\Sigma_i k_i c_i$ by definition.
664	For the generic RO_2 loss rate, the reactions of RO_2 with HO_2 , NO , RO_2 , NO_2 (for acyl RO_2 only) and
665	OH are considered. Isomerization generally does not lead to a total RO ₂ concentration decrease and is
666	thus not included in its loss rate. Then the RO_2 loss rate is
667	$L = k_{\rm H0_2} RO_2 \cdot HO_2 + k_{\rm N0} RO_2 \cdot NO + 2k_{\rm R0_2} RO_2 \cdot RO_2 + k_{\rm N0_2} RO_2 \cdot NO_2 + k_{\rm OH} RO_2 \cdot OH $ (A2)
668	where RO ₂ , HO ₂ , NO, NO ₂ and OH are the concentrations of corresponding species and k_A (A = RO ₂ , HO ₂ ,
669	NO, NO ₂ and OH) is the reaction rate constant of RO ₂ with A. For non-acyl RO ₂ , the term $k_{ m NO_2} m RO_2\cdot NO_2$
670	is not included; for cases with well-known pathways only (RO ₂ +HO ₂ , RO ₂ +RO ₂ , RO ₂ +NO and RO ₂ +NO ₂ ;
671	see Section 3.1), the term $k_{ m OH} m RO_2\cdot OH$ is excluded. $k_{ m RO_2}$ needs to be given a value (which may be the
672	main levels of RO ₂ self-/cross-reaction rate constants in this study, $1x10^{-13}$ and $1x10^{-11}$ cm ³ moelcule ⁻¹ s ⁻¹
673	¹ , or other values depending on the RO ₂ type).
674	At the steady state, P and L are equal. For an ambient/chamber setting, OH, HO ₂ , NO, NO ₂ and
675	OHRvoc are often measured or known. In this case, simultaneously considering Eqs. A1 and A2 yields a
676	quadratic equation of RO_2 concentration (the only unknown). Then generic RO_2 concentration can be
677	easily obtained by solving this equation:
678	$\mathrm{RO}_{2} = \left(-K + \sqrt{K^{2} + 8k_{\mathrm{RO}_{2}} \cdot \mathrm{OHR}_{\mathrm{VOC}} \cdot \mathrm{OH}}\right) / \left(4k_{\mathrm{RO}_{2}}\right) \tag{A3}$
679	where $K = k_{HO_2}HO_2 + k_{NO}NO + k_{NO_2}NO_2 + k_{OH}OH$.
680	
681	Conflicts of interest
682	There are no conflicts to declare.
683	
684	Acknowledgements

685This work was partially supported by grants EPA STAR 83587701-0, NSF AGS-1740610, NSF AGS-1822664,686NASA NNX15AT96G, and DOE(BER/ASR) DE-SC0016559. We thank the following individuals for providing

687 data from atmospheric field studies: Tran Nguyen and Jordan Krechmer (FIXCIT), William Brune (SOAS and ATom), Pedro Campuzano-Jost (ATom), Daun Jeong and Saewung Kim (GoAmazon). We are also grateful to John Crounse, Joel Thornton, Paul Ziemann, Dwayne Heard, Paul Wennberg, Andrew Lambe and William Brune for useful discussions and Donna Sueper for her assistance in the development of

691 the RO₂ Fate Estimator. NCAR is sponsored by the National Science Foundation. EPA has not reviewed

this manuscript and thus no endorsement should be inferred.

694 References

Assaf, E., Song, B., Tomas, A., Schoemaecker, C. and Fittschen, C.: Rate Constant of the Reaction between
CH3O2 Radicals and OH Radicals Revisited, J. Phys. Chem. A, 120(45), 8923–8932,
doi:10.1021/acs.ipca.6b07704, 2016.

Assaf, E., Tanaka, S., Kajii, Y., Schoemaecker, C. and Fittschen, C.: Rate constants of the reaction of C2–
C4 peroxy radicals with OH radicals, Chem. Phys. Lett., 684, 245–249, doi:10.1016/j.cplett.2017.06.062,
2017a.

Assaf, E., Sheps, L., Whalley, L., Heard, D., Tomas, A., Schoemaecker, C. and Fittschen, C.: The Reaction
 between CH3O2 and OH Radicals: Product Yields and Atmospheric Implications, Environ. Sci. Technol.,
 51(4), 2170–2177, doi:10.1021/acs.est.6b06265, 2017b.

Assaf, E., Schoemaecker, C., Vereecken, L. and Fittschen, C.: Experimental and theoretical investigation
 of the reaction of RO2 radicals with OH radicals: Dependence of the HO2 yield on the size of the alkyl
 group, Int. J. Chem. Kinet., 50(9), 670–680, doi:10.1002/kin.21191, 2018.

Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds., Chem. Rev., 103(12),
 4605–38, doi:10.1021/cr0206420, 2003.

Aumont, B., Szopa, S. and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase
 tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos.
 Chem. Phys., 5(9), 2497–2517, doi:10.5194/acp-5-2497-2005, 2005.

Berndt, T., Scholz, W., Mentler, B., Fischer, L., Herrmann, H., Kulmala, M. and Hansel, A.: Accretion
Product Formation from Self- and Cross-Reactions of RO 2 Radicals in the Atmosphere, Angew. Chemie
Int. Ed., 57(14), 3820–3824, doi:10.1002/anie.201710989, 2018.

Bossolasco, A., Faragó, E. P., Schoemaecker, C. and Fittschen, C.: Rate constant of the reaction between
 CH3O2 and OH radicals, Chem. Phys. Lett., 593(2014), 7–13, doi:10.1016/j.cplett.2013.12.052, 2014.

Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L.,
Wilmouth, D. M. and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric
Studies: Evaluation Number 18, Pasadena, CA, USA. [online] Available from:
http://jpldataeval.jpl.nasa.gov/, 2015.

Carlton, A. G., de Gouw, J., Jimenez, J. L., Ambrose, J. L., Attwood, A. R., Brown, S., Baker, K. R., Brock,
C., Cohen, R. C., Edgerton, S., Farkas, C. M., Farmer, D., Goldstein, A. H., Gratz, L., Guenther, A., Hunt, S.,
Jaeglé, L., Jaffe, D. A., Mak, J., McClure, C., Nenes, A., Nguyen, T. K., Pierce, J. R., de Sa, S., Selin, N. E.,
Shah, V., Shaw, S., Shepson, P. B., Song, S., Stutz, J., Surratt, J. D., Turpin, B. J., Warneke, C., Washenfelder,
R. A., Wennberg, P. O. and Zhou, X.: Synthesis of the Southeast Atmosphere Studies: Investigating
Fundamental Atmospheric Chemistry Questions, Bull. Am. Meteorol. Soc., 99(3), 547–567,
doi:10.1175/BAMS-D-16-0048.1, 2018.

Carter, W. P. L., Cocker, D. R., Fitz, D. R., Malkina, I. L., Bumiller, K., Sauer, C. G., Pisano, J. T., Bufalino, C.
and Song, C.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and
secondary aerosol formation, Atmos. Environ., 39(40), 7768–7788,
doi:10.1016/j.atmosenv.2005.08.040, 2005.

Cocker, D. R., Flagan, R. C. and Seinfeld, J. H.: State-of-the-Art Chamber Facility for Studying Atmospheric
 Aerosol Chemistry, Environ. Sci. Technol., 35(12), 2594–2601, doi:10.1021/es0019169, 2001.

Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G. and Wennberg, P. O.: Autoxidation of
organic compounds in the atmosphere, J. Phys. Chem. Lett., 4, 3513–3520, doi:10.1021/jz4019207,
2013.

D'Ambro, E. L., Møller, K. H., Lopez-Hilfiker, F. D., Schobesberger, S., Liu, J., Shilling, J. E., Lee, B. H.,
Kjaergaard, H. G. and Thornton, J. A.: Isomerization of Second-Generation Isoprene Peroxy Radicals:
Epoxide Formation and Implications for Secondary Organic Aerosol Yields, Environ. Sci. Technol., 51(9),
4978–4987, doi:10.1021/acs.est.7b00460, 2017.

Fittschen, C., Whalley, L. K. and Heard, D. E.: The reaction of CH3O2 radicals with OH radicals: a
neglected sink for CH3O2 in the remote atmosphere., Environ. Sci. Technol., 48(14), 7700–1,
doi:10.1021/es502481q, 2014.

Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen,
R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B. L.
and Grossberg, N.: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011,
Atmos. Chem. Phys., 13(17), 8585–8605, doi:10.5194/acp-13-8585-2013, 2013.

Hu, W., Palm, B. B., Day, D. A., Campuzano-Jost, P., Krechmer, J. E., Peng, Z., de Sá, S. S., Martin, S. T.,
Alexander, M. L., Baumann, K., Hacker, L., Kiendler-Scharr, A., Koss, A. R., de Gouw, J. A., Goldstein, A.
H., Seco, R., Sjostedt, S. J., Park, J.-H., Guenther, A. B., Kim, S., Canonaco, F., Prévôt, A. S. H., Brune, W.

H., Seco, R., Sjostedt, S. J., Park, J.-H., Guenther, A. B., Kim, S., Canonaco, F., Prévôt, A. S. H., Brune, W.
 H. and Jimenez, J. L.: Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-

 752
 epoxydiols-derived secondary organic aerosol (IEPOX-SOA), Atmos. Chem. Phys., 16(18), 11563–11580,

 753
 doi:10.5194/acp-16-11563-2016, 2016.

Jørgensen, S., Knap, H. C., Otkjær, R. V, Jensen, A. M., Kjeldsen, M. L. H., Wennberg, P. O. and Kjaergaard,
H. G.: Rapid Hydrogen Shift Scrambling in Hydroperoxy-Substituted Organic Peroxy Radicals, J. Phys.
Chem. A, 120(2), 266–275, doi:10.1021/acs.jpca.5b06768, 2016.

Kalafut-Pettibone, A. J., Klems, J. P., Burgess, D. R. and McGivern, W. S.: Alkylperoxy radical
photochemistry in organic aerosol formation processes., J. Phys. Chem. A, 117(51), 14141–50,
doi:10.1021/jp4094996, 2013.

Kang, E., Root, M. J., Toohey, D. W. and Brune, W. H.: Introducing the concept of Potential Aerosol Mass
 (PAM), Atmos. Chem. Phys., 7(22), 5727–5744, doi:10.5194/acp-7-5727-2007, 2007.

Kang, E., Toohey, D. W. and Brune, W. H.: Dependence of SOA oxidation on organic aerosol mass
concentration and OH exposure: experimental PAM chamber studies, Atmos. Chem. Phys., 11(4), 1837–
1852, doi:10.5194/acp-11-1837-2011, 2011.

765 Karjalainen, P., Timonen, H., Saukko, E., Kuuluvainen, H., Saarikoski, S., Aakko-Saksa, P., Murtonen, T.,

766 Bloss, M., Dal Maso, M., Simonen, P., Ahlberg, E., Svenningsson, B., Brune, W. H., Hillamo, R., Keskinen,

J. and Rönkkö, T.: Time-resolved characterization of primary particle emissions and secondary particle
formation from a modern gasoline passenger car, Atmos. Chem. Phys., 16(13), 8559–8570,
doi:10.5194/acp-16-8559-2016, 2016.

Klems, J. P., Lippa, K. a and McGivern, W. S.: Quantitative Evidence for Organic Peroxy Radical
Photochemistry at 254 nm, J. Phys. Chem. A, 119(2), 344–351, doi:10.1021/jp509165x, 2015.

Knap, H. C. and Jørgensen, S.: Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals, J. Phys. Chem. A,
 121(7), 1470–1479, doi:10.1021/acs.jpca.6b12787, 2017.

Krechmer, J. E., Pagonis, D., Ziemann, P. J. and Jimenez, J. L.: Quantification of Gas-Wall Partitioning in
 Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ,
 Environ. Sci. Technol., 50(11), 5757–5765, doi:10.1021/acs.est.6b00606, 2016.

Lambe, A., Massoli, P., Zhang, X., Canagaratna, M., Nowak, J., Daube, C., Yan, C., Nie, W., Onasch, T.,
Jayne, J., Kolb, C., Davidovits, P., Worsnop, D. and Brune, W.: Controlled nitric oxide production via
O(<sup&gt;1&lt;/sup&gt;D) + N&lt;sub&gt;2&lt;/sub&gt;O
reactions for use in oxidation flow reactor studies, Atmos. Meas. Tech., 10(6), 2283–2298,
doi:10.5194/amt-10-2283-2017, 2017.

782Lambe, A. T. and Jimenez, J. L.: PAM Wiki: User Groups, [online] Available from:783https://sites.google.com/site/pamwiki/user-groups (Accessed 2 July 2018), 2018.

Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N.
L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P. and Onasch, T. B.: Characterization of
aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation
and cloud condensation nuclei activity measurements, Atmos. Meas. Tech., 4(3), 445–461,
doi:10.5194/amt-4-445-2011, 2011.

Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D., Martin, A. T., Cummings, M. J.,
Croasdale, D. R., Brune, W. H., Worsnop, D. R. and Davidovits, P.: Relationship between Oxidation Level
and Optical Properties of Secondary Organic Aerosol, Environ. Sci. Technol., 47(12), 6349–6357,
doi:10.1021/es401043j, 2013.

Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings, M. J., Brogan,
 J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E. and Davidovits, P.: Effect of oxidant concentration, exposure

time, and seed particles on secondary organic aerosol chemical composition and yield, Atmos. Chem.
 Phys., 15(6), 3063–3075, doi:10.5194/acp-15-3063-2015, 2015.

Levy II, H.: Normal atmosphere: large radical and formaldehyde concentrations predicted., Science,
 173(3992), 141–143, doi:10.1126/science.173.3992.141, 1971.

Li, R., Palm, B. B., Ortega, A. M., Hu, W., Peng, Z., Day, D. A., Knote, C., Brune, W. H., de Gouw, J. and
Jimenez, J. L.: Modeling the radical chemistry in an Oxidation Flow Reactor (OFR): radical formation and
recycling, sensitivities, and OH exposure estimation equation, J. Phys. Chem. A, 119(19), 4418–4432,
doi:10.1021/jp509534k, 2015.

Lim, C. Y., Browne, E. C., Sugrue, R. A. and Kroll, J. H.: Rapid heterogeneous oxidation of organic coatings
 on submicron aerosols, Geophys. Res. Lett., 44(6), 2949–2957, doi:10.1002/2017GL072585, 2017.

Link, M. F., Friedman, B., Fulgham, R., Brophy, P., Galang, A., Jathar, S. H., Veres, P., Roberts, J. M. and
Farmer, D. K.: Photochemical processing of diesel fuel emissions as a large secondary source of isocyanic
acid (HNCO), Geophys. Res. Lett., 43(8), 4033–4041, doi:10.1002/2016GL068207, 2016.

Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, a., Huey, L. G., Cohen, R. C., Heikes, B.,
Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R. and Shetter, R. E.: Airborne measurement
of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9(1), 163–173, doi:10.5194/acp-9-163-2009, 2009.

Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae,
M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl, U., Silva
Dias, M. A., Smith, J. N. and Wendisch, M.: Introduction: Observations and Modeling of the Green Ocean
Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16(8), 4785–4797, doi:10.5194/acp-16-4785-2016,
2016.

816 Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Biscaro, T., 817 Brito, J., Calheiros, A., Jardine, K., Medeiros, A., Portela, B., De Sá, S. S., Adachi, K., Aiken, A. C., Alblbrecht, 818 R., Alexander, L., Andreae, M. O., Barbosa, H. M. J., Buseck, P., Chand, D., Comstmstmck, J. M., Day, 819 D. A., Dubey, M., Fan, J., Fastst, J., Fisch, G., Fortner, E., Giangrande, S., Gillles, M., Goldststein, A. H., 820 Guenther, A., Hubbbbe, J., Jensen, M., Jimenez, J. L., Keutstsch, F. N., Kim, S., Kuang, C., Laskskin, A., 821 McKinney, K., Mei, F., Millller, M., Nascimento, R., Pauliquevis, T., Pekour, M., Peres, J., Petäjä, T., 822 Pöhlklker, C., Pöschl, U., Rizzo, L., Schmid, B., Shillling, J. E., Silva Dias, M. A., Smith, J. N., Tomlmlinson, 823 J. M., Tóta, J. and Wendisch, M.: The green ocean amazon experiment (GOAMAZON2014/5) observes 824 pollution affecting gases, aerosols, clouds, and rainfall over the rain forest, Bull. Am. Meteorol. Soc., 825 98(5), 981-997, doi:10.1175/BAMS-D-15-00221.1, 2017.

Matsunaga, A. and Ziemann, P. J.: Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber
 and Potential Effects on Reaction Product and Aerosol Yield Measurements, Aerosol Sci. Technol., 44(10),
 881–892, doi:10.1080/02786826.2010.501044, 2010.

Müller, J.-F., Liu, Z., Nguyen, V. S., Stavrakou, T., Harvey, J. N. and Peeters, J.: The reaction of methyl
 peroxy and hydroxyl radicals as a major source of atmospheric methanol, Nat. Commun., 7(May), 13213,
 doi:10.1038/ncomms13213, 2016.

Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J., Blake, D. R.,
Brune, W. H., Choi, Y., Corr, C. A., de Gouw, J. A., Dibb, J., DiGangi, J. P., Diskin, G. S., Fried, A., Huey, L.
G., Kim, M. J., Knote, C. J., Lamb, K. D., Lee, T., Park, T., Pusede, S. E., Scheuer, E., Thornhill, K. L., Woo,
J.-H. and Jimenez, J. L.: Secondary Organic Aerosol Production from Local Emissions Dominates the
Organic Aerosol Budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys. Discuss., 1–69,
doi:10.5194/acp-2018-838, 2018.

838 Nel, A.: Air Pollution-Related Illness: Effects of Particles, Science (80-.)., 308(5723), 804–806,
 839 doi:10.1126/science.1108752, 2005.

Nguyen, T. B., Crounse, J. D., Schwantes, R. H., Teng, A. P., Bates, K. H., Zhang, X., St. Clair, J. M., Brune,
W. H., Tyndall, G. S., Keutsch, F. N., Seinfeld, J. H. and Wennberg, P. O.: Overview of the Focused Isoprene
eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the
oxidation of biogenic compounds, Atmos. Chem. Phys., 14(24), 13531–13549, doi:10.5194/acp-1413531-2014, 2014.

845 Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with

846 emphasis on recent issues of atmospheric significance, Chem. Soc. Rev., 41(19), 6294,
847 doi:10.1039/c2cs35166h, 2012.

Ortega, A. M., Day, D. A., Cubison, M. J., Brune, W. H., Bon, D., de Gouw, J. A. and Jimenez, J. L.:
Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning
smoke in a flow reactor during FLAME-3, Atmos. Chem. Phys., 13(22), 11551–11571, doi:10.5194/acp13-11551-2013, 2013.

Ortega, A. M., Hayes, P. L., Peng, Z., Palm, B. B., Hu, W., Day, D. A., Li, R., Cubison, M. J., Brune, W. H.,
Graus, M., Warneke, C., Gilman, J. B., Kuster, W. C., de Gouw, J., Gutiérrez-Montes, C. and Jimenez, J. L.:
Real-time measurements of secondary organic aerosol formation and aging from ambient air in an
oxidation flow reactor in the Los Angeles area, Atmos. Chem. Phys., 16(11), 7411–7433,
doi:10.5194/acp-16-7411-2016, 2016.

857 Ortega, J., Turnipseed, A., Guenther, A. B., Karl, T. G., Day, D. A., Gochis, D., Huffman, J. A., Prenni, A. J., 858 Levin, E. J. T., Kreidenweis, S. M., DeMott, P. J., Tobo, Y., Patton, E. G., Hodzic, A., Cui, Y. Y., Harley, P. C., 859 Hornbrook, R. S., Apel, E. C., Monson, R. K., Eller, A. S. D., Greenberg, J. P., Barth, M. C., Campuzano-Jost, 860 P., Palm, B. B. B., Jimenez, J. L., Aiken, A. C., Dubey, M. K., Geron, C., Offenberg, J., Ryan, M. G., Fornwalt, 861 P. J., Pryor, S. C., Keutsch, F. N., Digangi, J. P., Chan, A. W. H., Goldstein, A. H., Wolfe, G. M., Kim, S., Kaser, 862 L., Schnitzhofer, R., Hansel, A., Cantrell, C. A., Mauldin, R. L. and Smith, J. N.: Overview of the Manitou 863 experimental forest observatory: Site description and selected science results from 2008 to 2013, Atmos. 864 Chem. Phys., 14(12), 6345-6367, doi:10.5194/acp-14-6345-2014, 2014.

Palm, B. B., Campuzano-Jost, P., Ortega, A. M., Day, D. A., Kaser, L., Jud, W., Karl, T., Hansel, A., Hunter, J.
F., Cross, E. S., Kroll, J. H., Peng, Z., Brune, W. H. and Jimenez, J. L.: In situ secondary organic aerosol
formation from ambient pine forest air using an oxidation flow reactor, Atmos. Chem. Phys., 16(5),
2943–2970, doi:10.5194/acp-16-2943-2016, 2016.

Palm, B. B., Campuzano-Jost, P., Day, D. A., Ortega, A. M., Fry, J. L., Brown, S. S., Zarzana, K. J., Dube, W.,
Wagner, N. L., Draper, D. C., Kaser, L., Jud, W., Karl, T., Hansel, A., Gutiérrez-Montes, C. and Jimenez, J.
L.: Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in
an oxidation flow reactor, Atmos. Chem. Phys., 17(8), 5331–5354, doi:10.5194/acp-17-5331-2017, 2017.

Peng, Z. and Jimenez, J. L.: Modeling of the chemistry in oxidation flow reactors with high initial NO,
Atmos. Chem. Phys., 17(19), 11991–12010, doi:10.5194/acp-17-11991-2017, 2017.

Peng, Z., Day, D. A., Stark, H., Li, R., Lee-Taylor, J., Palm, B. B., Brune, W. H. and Jimenez, J. L.: HOx radical
chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by
modeling, Atmos. Meas. Tech., 8(11), 4863–4890, doi:10.5194/amt-8-4863-2015, 2015.

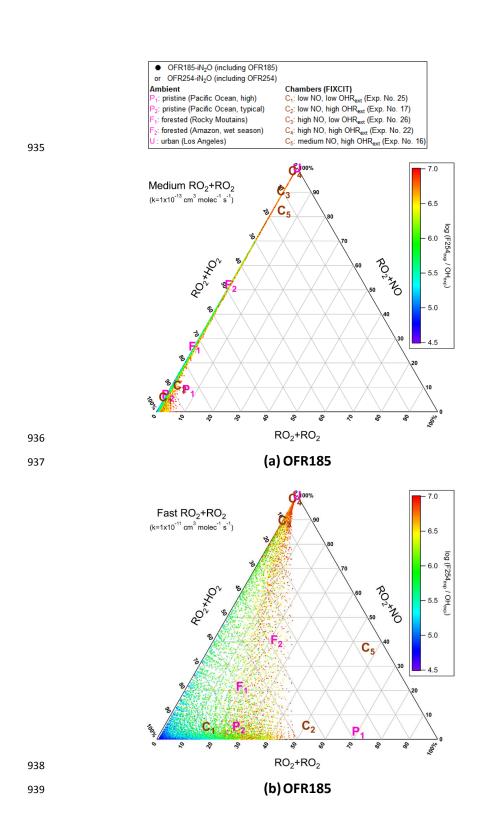
Peng, Z., Day, D. A., Ortega, A. M., Palm, B. B., Hu, W., Stark, H., Li, R., Tsigaridis, K., Brune, W. H. and
Jimenez, J. L.: Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry
systematically examined by modeling, Atmos. Chem. Phys., 16(7), 4283–4305, doi:10.5194/acp-164283-2016, 2016.

Peng, Z., Palm, B. B., Day, D. A., Talukdar, R. K., Hu, W., Lambe, A. T., Brune, W. H. and Jimenez, J. L.:
Model Evaluation of New Techniques for Maintaining High-NO Conditions in Oxidation Flow Reactors
for the Study of OH-Initiated Atmospheric Chemistry, ACS Earth Sp. Chem., 2(2), 72–86,
doi:10.1021/acsearthspacechem.7b00070, 2018.

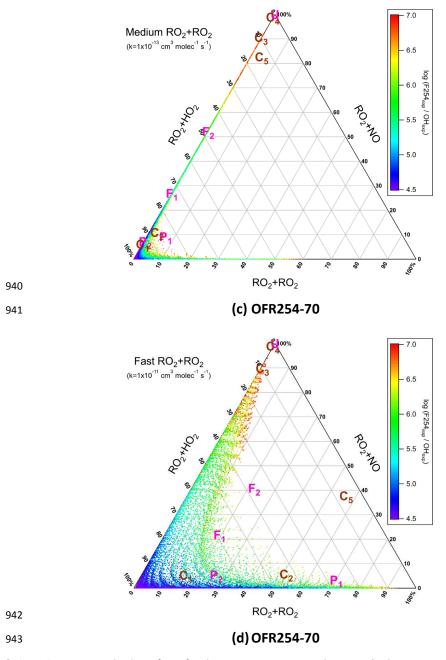
Platt, S. M., El Haddad, I., Zardini, a. a., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel,
B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F.,
Baltensperger, U. and Prévôt, a. S. H.: Secondary organic aerosol formation from gasoline vehicle
emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13(18), 9141–9158,
doi:10.5194/acp-13-9141-2013, 2013.

Praske, E., Otkjær, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B. M., Kjaergaard, H. G. and Wennberg, P.
O.: Atmospheric autoxidation is increasingly important in urban and suburban North America, Proc. Natl.
Acad. Sci., 115(1), 64–69, doi:10.1073/pnas.1715540115, 2018.

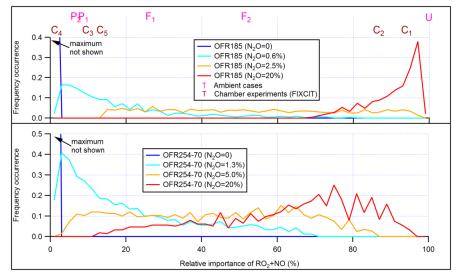
Presto, A. A., Huff Hartz, K. E. and Donahue, N. M.: Secondary Organic Aerosol Production from Terpene
Ozonolysis. 1. Effect of UV Radiation, Environ. Sci. Technol., 39(18), 7036–7045,
doi:10.1021/es050174m, 2005.



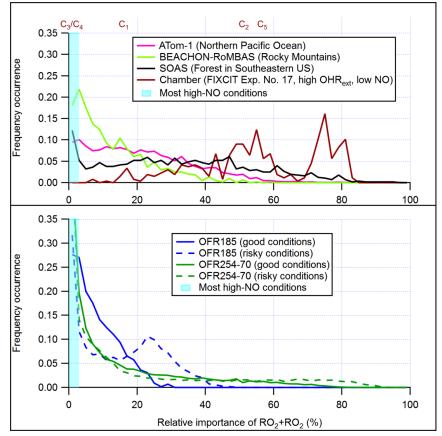
- 897 Richards-Henderson, N. K., Goldstein, A. H. and Wilson, K. R.: Large Enhancement in the Heterogeneous 898 Oxidation Rate of Organic Aerosols by Hydroxyl Radicals in the Presence of Nitric Oxide, J. Phys. Chem. 899 Lett., 6, 4451-4455, doi:10.1021/acs.jpclett.5b02121, 2015.
- 900 Richards-Henderson, N. K., Goldstein, A. H. and Wilson, K. R.: Sulfur Dioxide Accelerates the 901 Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals, Environ. Sci. Technol., 50(7), 902 3554-3561, doi:10.1021/acs.est.5b05369, 2016.
- 903 Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A., Cairns, B., Cohen, R. C., Cooper,
- 904 O. R., De Gouw, J. A., Fehsenfeld, F. C., Ferrare, R. A., Fischer, M. L., Flagan, R. C., Goldstein, A. H., Hair,
- 905 J. W., Hardesty, R. M., Hostetler, C. A., Jimenez, J. L., Langford, A. O., McCauley, E., McKeen, S. A., Molina,
- 906 L. T., Nenes, A., Oltmans, S. J., Parrish, D. D., Pederson, J. R., Pierce, R. B., Prather, K., Quinn, P. K., Seinfeld,
- 907 J. H., Senff, C. J., Sorooshian, A., Stutz, J., Surratt, J. D., Trainer, M., Volkamer, R., Williams, E. J. and Wofsy,
- 908 S. C.: The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study,
- 909 J. Geophys. Res. Atmos., 118(11), 5830–5866, doi:10.1002/jgrd.50331, 2013.
- 910 Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and 911 Midgley, P. M.: Climate Change 2013 - The Physical Science Basis, edited by Intergovernmental Panel on 912 Climate Change, Cambridge University Press, Cambridge., 2014.
- 913 Stone, D., Whalley, L. K. and Heard, D. E.: Tropospheric OH and HO2 radicals: field measurements and 914 model comparisons, Chem. Soc. Rev., 41(19), 6348, doi:10.1039/c2cs35140d, 2012.
- 915 Tkacik, D. S., Lambe, A. T., Jathar, S., Li, X., Presto, A. A., Zhao, Y., Blake, D., Meinardi, S., Jayne, J. T.,
- 916 Croteau, P. L. and Robinson, A. L.: Secondary Organic Aerosol Formation from in-Use Motor Vehicle
- 917 Emissions Using a Potential Aerosol Mass Reactor, Environ. Sci. Technol., 48(19), 11235-11242,
- 918 doi:10.1021/es502239v, 2014.
- Wang, J., Doussin, J. F., Perrier, S., Perraudin, E., Katrib, Y., Pangui, E. and Picquet-Varrault, B.: Design of 919 920 a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud 921 chemistry research, Atmos. Meas. Tech., 4(11), 2465–2494, doi:10.5194/amt-4-2465-2011, 2011.
- 922 Wofsy, S. C., Apel, E., Blake, D. R., Brock, C. A., Brune, W. H., Bui, T. P., Daube, B. C., Dibb, J. E., Diskin, G.
- 923 S., Elkiins, J. W., Froyd, K., Hall, S. R., Hanisco, T. F., Huey, L. G., Jimenez, J. L., McKain, K., Montzka, S. A., 924 Ryerson, T. B., Schwarz, J. P., Stephens, B. B., Weinzierl, B. and Wennberg, P.: ATom: Merged Atmospheric
- 925 Chemistry, Trace Gases, and Aerosols, Oak Ridge, Tennessee, USA., 2018.
- 926 Yan, C., Kocevska, S. and Krasnoperov, L. N.: Kinetics of the Reaction of CH3O2 Radicals with OH Studied 927 over the 292-526 K Temperature Range, J. Phys. Chem. A, 120(31), 6111-6121, 928 doi:10.1021/acs.jpca.6b04213, 2016.
- Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J. and Seinfeld, J. H.: 929 930 Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol., Proc. Natl. Acad. Sci. U. S. A., 111(16), 5802-7, doi:10.1073/pnas.1404727111, 2014. 931
- 932 Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol 933 formation, Chem. Soc. Rev., 41(19), 6582, doi:10.1039/c2cs35122f, 2012.



944Figure 1. Triangle plots of RO2 fate by RO2+HO2, RO2+RO2 and RO2+NO (without RO2+OH and RO2945isomerization considered in the model) for RO2 with the medium self/cross reaction rate constant (1x10-946 13 cm⁻³ molecule⁻¹ s⁻¹) in (a) OFR185 (including OFR185-iN2O) and (c) OFR254-70 (including OFR254-70-947iN2O) and for RO2 with the fast self/cross reaction rate constant (1x10⁻¹¹ cm⁻³ molecule⁻¹ s⁻¹) in (b)948OFR185 (including OFR185-iN2O) and (d) OFR254-70 (including OFR254-70-iN2O). Inclined tick values on949an axis indicate the grid lines that should be followed (in parallel to the inclination) to read the

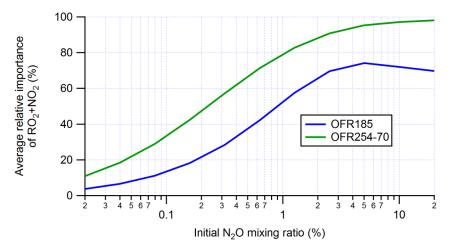


- 950 corresponding values on this axis. The OFR data points are colored by the logarithm of the exposure ratio
- 951 between 254 nm photon flux and OH, a measure of badness of OFR conditions in terms of 254 nm organic
- 952 photolysis. Several typical ambient and chamber cases (see Table 2 for details of these cases) are also
- 953 shown for comparison.



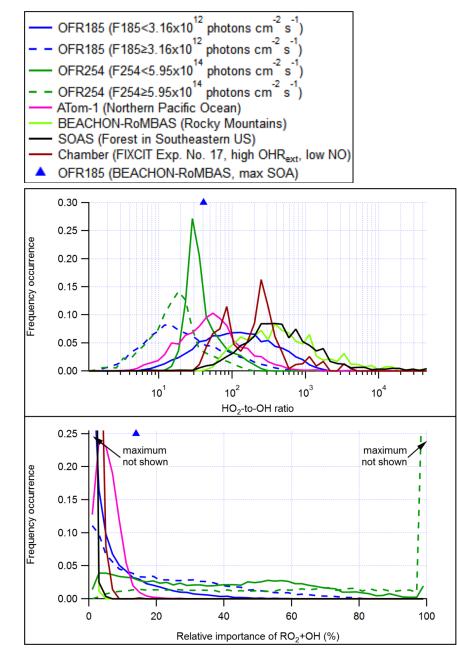
955 956

Figure 2. Frequency distributions of the relative importance of RO_2+NO in the fate of RO_2 (with medium 957 self/cross reaction rate constant and without RO₂+OH and RO₂ isomerization considered) for OFR185 958 (including OFR185-iN₂O) and OFR254-70 (including OFR254-70-iN₂O). Distributions for several different 959 N₂O levels are shown. Only good and risky conditions (in terms of non-tropospheric organic photolysis) 960 are included in the distributions. Also shown is the relative importance of RO₂+NO for several typical 961 ambient and chamber cases (see Table 2 for details of these cases).

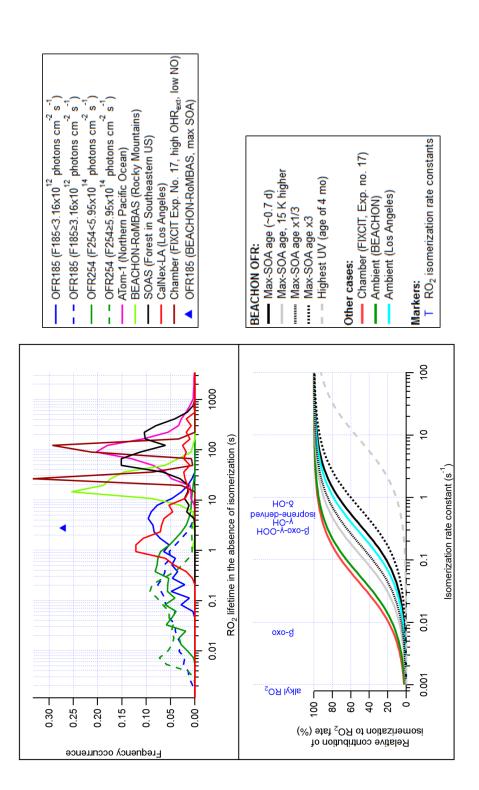


963 964

Figure 3. Frequency distributions of the relative importance of RO₂+RO₂ in the fate of RO₂ (with fast 965 self/cross reaction rate constant and without RO_2+OH and RO_2 isomerization considered) for OFR185 966 (including OFR185-iN₂O), OFR254-70 (including OFR254-70-iN₂O) and a chamber experiment and in the 967 atmosphere (a couple of different environments). The OFR distributions for good and risky conditions (in 968 terms of 254 nm organic photolysis, see Table S1 for the definitions of these conditions) are shown 969 separately. Also shown is the relative importance of RO₂+RO₂ for several typical chamber cases (see Table 970 2 for details of these cases). The range of the RO₂+RO₂ relative importance for most high-NO conditions 971 is highlighted in cyan.



973 Initial N₂O mixing ratio (%)
974 Figure 4. Average relative importance of RO₂+NO₂ in acyl RO₂ fate (RO₂+OH and RO₂ isomerization not considered) in OFR185 (including OFR185-iN₂O) and OFR254-70 (including OFR254-70-iN₂O). The averages are calculated based on good and risky conditions (in terms of non-tropospheric organic photolysis) only.



978

980 Figure 5. Frequency distributions of (top) the HO₂-to-OH ratio and (bottom) the relative importance of 981 RO₂+OH in the fate of RO₂ (with medium self/cross reaction rate constant) for OFR185 (including OFR185-982 iN_2O), OFR254-70 (including OFR254-70- iN_2O) and a chamber experiment and in the atmosphere (a couple of different environments). The OFR distributions for lower (F185<3.16x10¹² photons cm⁻² s⁻¹; 983 F254<5.95x10¹⁴ photons cm⁻² s⁻¹) and higher UV (F185≥3.16x10¹² photons cm⁻² s⁻¹; F254≥5.95x10¹⁴ 984 985 photons cm⁻² s⁻¹) are shown separately. Only good and risky conditions (in terms of non-tropospheric 986 organic photolysis) are included in the distributions for OFRs. Also shown are the HO₂-to-OH and the 987 relative importance of RO₂+OH for OFR experiments with ambient air input in field studies.

£

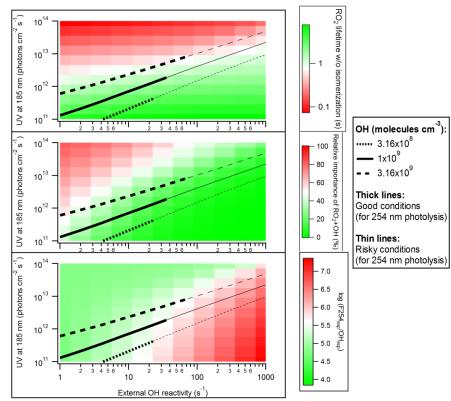


Figure 6. (top) Same format as Fig. 5, but for RO₂ lifetime (RO₂ isomerization included in the model but excluded from lifetime calculation). (bottom) Relative contribution of isomerization to RO2 fate as a function of RO2 isomerization rate constant in several model cases for OFR experiments in the BEACHON-RoMBAS campaign (Palm et al., 2016),

- in a chamber experiment and in two ambient cases. Isomerization rate constants of several R02 (Crounse et al., 2013; Praske et al., 2018) are also shown. 988 989 991

992 External OH reactivity (s)
993 Figure 7. (top) RO₂ lifetime in the absence of isomerization, (middle) relative importance of RO₂+OH in
994 RO₂ fate and (bottom) logarithm of the exposure ratio between 254 nm photon flux and OH as a function
995 of 185 nm photon flux and external OH reactivity for OFR185 at N₂O=0 and H₂O=2.3%. Three lines
996 denoting conditions leading to OH of 3.16x10⁸, 1x10⁹ and 3.16x10⁹ molecules cm⁻³, respectively, are
997 added in each panel. The thick and thin parts of these lines correspond to good and risky conditions (in
998 terms of 254 nm organic photolysis (which is usually worse than 185 nm organic photolysis; Peng et al.,
999 2016) respectively.

1001

product(s) of RO ₂ loss pathw	vays. Only organic species are listed for p	roduct(s).
RO ₂ loss pathway	Rate constant / cross section	Product(s)
RO ₂ +HO ₂	1.5x10 ^{-11 a}	mainly ROOH for most RO ₂ ^a
RO ₂ +NO	9x10 ^{-12 a}	RO, RONO2 ^b
RO ₂ +RO ₂	Primary: ~10 ^{-13 a} Secondary: ~10 ^{-15 a} Tertiary: ~10 ^{-17 a} Substituted: can be up to 2 orders of magnitude higher ^b Acyl: ~10 ^{-11 b}	ROH+R(=O), RO+RO, ROORª
RO ₂ +NO ₂ (in OFRs)	7x10 ^{-12 c}	RO ₂ NO ₂ ^b
RO ₂ +OH	1x10 ^{-10 d}	ROOOH (for ≥C4 RO₂), RO (smaller RO₂) ^e
RO ₂ isomerization	Autoxidation: ~10 ⁻³ –10 ^{2 f} Other: up to 10 ^{6 g}	generally another RO_2
PO ₂ photolysis	~10 ⁻¹⁸ at 254 nm ^h	mainly R, other

Table 1. Rate constants [in cm³ molecule⁻¹ s⁻¹ except for isomerization (in s⁻¹)] / cross section (in cm²) and

1003 ^a: Ziemann and Atkinson (2012);

RO₂ photolysis

RO₂+NO₃

RO₂+O₃

1004 ^b: Orlando and Tyndall (2012);

1005 ^c: typical value within the reported range in Orlando and Tyndall (2012); thermal decomposition rate 1006 constants of nitrates of acyl and non-acyl RO_2 are assumed to be 0.0004 and 3 s⁻¹, respectively, also

~1-3x10^{-12 b}

~10^{-17 b}

~10⁻²¹–10⁻¹⁹ in UVA and UVB^h

photochemical products

possibleⁱ

 RO^b

 RO^{b}

1007 typical values within the reported ranges in Orlando and Tyndall (2012);

^d: value used in the present work based on Bossolasco et al. (2014); Assaf et al. (2016, 2017a); Müller
 et al. (2016); Yan et al. (2016);

1010 ^e: Müller et al. (2016); Yan et al. (2016); Assaf et al. (2017b, 2018);

1011 ^f: Crounse et al. (2013);

1012 ^g: Knap and Jørgensen (2017);

1013 ^h: Burkholder et al. (2015);

1014 ⁱ: Klems et al. (2015).

-	
\odot	٢
\sim	BY

Type	Label Case	Case	OHR _{voc} (s ⁻¹) OH	ЮН	NO	HO ₂
	P_1	Pristine (Pacific Ocean, high RO ₂) ^a	1.9	0.39 ppt	1.9 ppt	11 ppt
	P_2	Pristine (Pacific Ocean, typical) ^a	1	0.25 ppt	3 ppt	25 ppt
Ambient	F_1	Forested (Rocky Mountains) ^b	N/A ^c	1 ppt	60 ppt	100 ppt
	F_2	Forested (Amazon, wet season) ^d	9.6	1.2x10 ⁶ molecules cm ⁻³	37 ppt	5.1x10 ⁸ molecules cm ⁻³
	⊃	Urban (Los Angeles) ^e	25 ^f	1.5x10 ⁶ molecules cm ^{-3 g}	1.5 ppb ⁱ	1.5x10 ⁸ molecules cm ^{-3 g}
	C1	Exp. No. 25 ^h	30.5 ⁱ	3x10 ⁶ molecules cm ⁻³	15 ppt	150 ppt
Chambar	C_2	Exp. No. 17 ^h	116	1.2x10 ⁶ molecules cm ⁻³	10 ppt	50 ppt
	ပၱ	Exp. No. 26 ^h	32 ⁱ	2x10 ⁷ molecules cm ⁻³	3.5 ppb	230 ppt
	C	Exp. No. 22 ^h	147 ⁱ	2.3x10 ⁶ molecules cm ⁻³	430 ppb	4.3 ppb
	ۍ	Exp. No. 16 ^h	45.7 ⁱ	4x10 ⁶ molecules cm ⁻³	80 ppt	8 ppt
^a : Wofsy et al. (2018) for the A	al. (2018	^a : Wofsy et al. (2018) for the Atom-1 Campaign;				

Table 2. Several typical ambient and chamber (the FIXCIT campaign) cases that are compared to OFR cases.

1016

^b: Fry et al. (2013), for the BEACHON-RoMBAS campaign;

^c. RO₂ concentration was given in Fry et al. (2013) (50 ppt), so that OHRvoc is not needed for RO₂ fate estimation;

d: personal communication from Daun Jeong and Saewung Kim for the GoAmazon Campaign (Martin et al., 2016, 2017);

e: typical case in the CalNex-LA campaign (Ryerson et al., 2013);

f: estimated (Peng et al., 2016);

 $^{\rm B};$ typical ambient value (Mao et al., 2009; Stone et al., 2012); $^{\rm h}:$ data from Nguyen et al. (2014); 1017 1018 1019 1020 1021 1022 1023 1024 1025 1025

ⁱ: initial value.